Return to search

Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido. / On three-dimensional Reeb flows: implied existence of periodic orbits and a dynamical characterization of the solid torus

Neste trabalho, estudamos a dinâmica de Reeb associada a uma forma de contato $\\lambda$ definida numa 3-variedade compacta e conexa M. Assumimos que $\\lambda$ é tight e a primeira classe de Chern da estrutura de contato $\\xi=\\ker\\lambda$ se anula sobre $\\pi_2(M)$. No nosso primeiro resultado, supomos que M é fechada e existe uma órbita fechada L do fluxo de Reeb que é um p-nó trivial com número de auto-enlaçamento $-1/p$. Supomos, além disso, que o número de rotação transversal da p-ésima iterada de L é estritamente menor do que 1. Nestas condições, provamos que existe uma órbita fechada (de Reeb) contrátil geometricamente distinta de L e não-enlaçada em L cujo número de rotação transversal é 1. Apresentamos também uma versão deste resultado para o caso em que M é uma 3-variedade cujo bordo é difeomorfo a um toro e invariante pelo fluxo de Reeb e não existem órbitas fechadas contidas no bordo. Nosso segundo resultado é uma caracterização dinâmica do toro sólido. Seja $\\lambda$ uma forma de contato não-degenerada definida em uma 3-variedade M cujo bordo é difeomorfo a um toro e invariante pelo fluxo de Reeb. Se o fluxo de Reeb satisfaz certas hipóteses de torção sobre o bordo, então ou existe uma órbita fechada contrátil com índice de Conley-Zehnder 2 ou M é folheada por discos transversais ao campo de Reeb. Neste último caso, M é difeomorfa a um toro sólido e existe uma órbita fechada não-contrátil em M que é ponto fixo da aplicação de retorno induzida pela folheação. / In this work, we study the Reeb dynamics associated to a tight contact form $\\lambda$ defined on a compact, connected 3-manifold M. Suppose that the first Chern class of $\\xi=\\ker\\lambda$ vanish on $\\pi_2(M)$. In our first result, we assume that M is closed and there exists a closed Reeb orbit L which is a p-unknotted, has self-linking number $-1/p$ and the transverse rotation number of the p-th iterate of L is less than 1. Under these conditions, we verify that there exists a contractible closed Reeb orbit which is geometrically distinct from L and not linked to L with transverse rotation number 1. We also prove a version of this result when M is a compact 3-manifold M whose boundary is diffeomorphic to a torus and invariant by the flow and, moreover, there does not exist closed Reeb orbits on the boundary. Our second result is a dynamical characterization of the solid torus. We assume that $\\lambda$ is a contact form on a compact 3-manifold M whose boundary is diffeomorphic to a torus. Under the hypothesis of $\\lambda$ being non-degenerate, if the flow is tangent to $\\partial M$ and satisfies some twist conditions on the boundary, then either there exists a contractible closed Reeb orbit which has Conley-Zehnder index 2 or M is foliated by disks transverse to the Reeb flow. In this last case, we see that M is diffeomorphic to a solid torus and there exists a non-contractible closed Reeb orbit M which is a fixed point of the return map induced by the foliation.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-05022015-222314
Date29 October 2014
CreatorsAndré Vanderlinde da Silva
ContributorsPedro Antonio Santoro Salomão, Umberto Leone Hryniewicz, Leonardo de Magalhães Macarini, Clodoaldo Grotta Ragazzo, Joachim Weber, Salvador Addas Zanata
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds