Return to search

Grupo de holonomia e o teorema de Berger / Holonomy group and Berger theorem

Orientador: Rafael de Freitas Leão / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-23T07:15:26Z (GMT). No. of bitstreams: 1
Genaro_Rafael_M.pdf: 1032495 bytes, checksum: 30e0fabb7aa149ab240fc0b3ae0b6d46 (MD5)
Previous issue date: 2013 / Resumo: Dada uma conexão sobre um fibrado vetorial podemos usá-la para construir o transporte paralelo de elementos do fibrado ao longo de curvas da variedade base. Esta operação nos fornece isomorfismos lineares entre as fibras do fibrado em questão, mas quando consideramos laços na variedade base o ponto de partida é igual ao ponto de chegada, desta forma obtemos um isomorfismo da fibra sobre este ponto nela mesma. O conjunto de isomorfismos obtidos por esta construção formam um grupo chamado Grupo de Holonomia. Quando consideramos o fibrado tangente de uma variedade riemanniana com a conexão Levi-Civita o grupo de holonomia está intrinsecamente relacionado com a geometria da variedade. Esta foi explorada por Marcel Berger para classificar quais grupos podem aparecer como holonomia de uma variedade riemanniana. O objetivo desta dissertação é fornecer uma demonstração geométrica, obtida por Carlos Olmos, deste resultado / Abstract: Given a connection over a vector bundle we can use it to build the parallel transport of elements in the bundle along curves of the base manifold. This function provides us with linear isomorphisms between the fibers of the bundle in question, but when we consider loops in the base manifold starting point is equal to the arrival point, this way we obtain an isomorphism of the fiber over this point in itself. The set of isomorphism obtained by this construction form a group called Holonomy Group. When we consider the tangent bundle of a Riemannian manifold with Levi-Civita connection the holonomy group is intrinsically related to the geometry of the array. This was explored by Marcel Berger to classify which groups can appear as holonomy of a Riemannian manifold. The objective of this dissertation is to provide a geometric demonstration, obtained by Carlos Olmos, this result / Mestrado / Matematica / Mestre em Matemática

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/306399
Date23 August 2018
CreatorsGenaro, Rafael, 1989-
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Leão, Rafael de Freitas, 1979-, Ferreira, Carlos Henrique Grossi, Jardim, Marcos Benevenuto
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format86 f. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds