Return to search

Blown Film Extrusion: Experimental, Modelling and Numerical Study

Abstract This thesis correlates rheological data into a non-linear blown film model that describes the stress and cooling-induced morphological transformations in the axial and flow profiles of the blown films. This will help to improve the physical and mechanical properties of the films in a cost effective way, which will in turn be of great benefit to the food and packaging industries. In this research, experimental and numerical studies of a blown film extrusion were carried out using two different low-density polyethylenes (LDPEs). In the experiment, the key parameters measured and analysed were molecular, rheological and crystalline properties of the LDPEs. In the numerical study, blown film simulation was carried out to determine the bubble characteristics and freeze line height (FLH). A new rheological constitutive equation was developed by combining the Hookean model with the well known Phan-Thien and Tanner (PTT) model to permit a more accurate viscoelastic behaviour of the material. For experimental verification of the simulation results, resins were processed in a blown film extrusion pilot plant using identical die temperatures and cooling rates as used in the simulation study. Molecular characteristics of both LDPEs were compared in terms of their processing benefit in the film blowing process. Based on the experimental investigation, it was found that molecular weight and its distribution, degree of long chain branching and cooling rate play an important role on melt rheology, molecular orientation, blown film processability, film crystallinity and film properties. Effect of short chain branching was found insignificant for both LDPEs. Statistical analysis was carried out using MINITAB-14 software with a confidence level of 95% to determine the effect of process variables (such as die temperature and cooling rate) on the film properties. Film properties of the LDPEs were found to vary with their molecular properties and the process variables used. Blown film model performance based on the newly established PTT-Hookean model was compared with that based on the Kelvin model. Justification of the use of PTT-Hookean model is also reported here using two different material properties. From the simulation study, it has been found that predictions of the blown film characteristics conformed very well to the experimental data of this research and previous studies using different materials and different die geometries. Long chain branching has been found as the most prominent molecular parameter for both LDPEs affecting melt rheology and hence the processability. Die temperature and cooling rate have been observed to provide similar effect on the tear strength and shrinkage properties of blown film for both LDPEs. In comparison to the Kelvin model, the PTT-Hookean model is better suited for the modelling of the film blowing process. It has also been demonstrated in this study that the PTT-Hookean model conformed well to the experimental data near the freeze line height and is suitable for materials of lower melt elasticity and relaxation time.

Identiferoai:union.ndltd.org:ADTP/210291
Date January 2008
CreatorsMajumder, Khokan Kanti, khokankanti@yahoo.com
PublisherRMIT University. Civil, Environmental and Chemical Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.rmit.edu.au/help/disclaimer, Copyright Khokan Kanti Majumder

Page generated in 0.0021 seconds