Ce travail de thèse constitue une contribution à la modélisation et au diagnostic des systèmes multi-domaines à commutation (hybrides). Il est appliqué à la supervision des systèmes multi-sources d’énergie propre où l’hydrogène est utilisé comme moyen de stockage. Un tel système associe des composantes énergétiques de nature différente et fait l’objet de commutations produites par la connexion et déconnexion d’un ou plusieurs composants. Ces commutations génèrent différents modes de fonctionnement et sont liées à l’intermittence des sources primaires, aux capacités de stockage et à la disponibilité opérationnelle des ressources matérielles qui constituent le système. La présence de ces commutations engendre une dynamique variable qui est classiquement difficile à exprimer mathématiquement sans exploiter tous les modes. Ces difficultés de modélisation se propagent pour affecter toutes les tâches dépendantes du modèle comme le diagnostic et la gestion de modes de fonctionnement. Pour résoudre ces problématiques, un nouvel outil, Bond Graph Hybride piloté par événements, a été développé. Entièrement graphique, ce formalisme permet une modélisation interdisciplinaire globale du système. En séparant la dynamique continue gérée par le Bond Graph Hybride des états discrets modélisés par un automate intégré, l’approche proposée simplifie la gestion des modes de fonctionnement. Le modèle issu de cette méthodologie est également bien adapté au diagnostic robuste, réalisable sans recourir aux équations analytiques. Associée au diagnostic robuste, cette gestion des modes permet l’implémentation de stratégies de reconfiguration et de protection en présence de défaillances. / This research work constitutes a general contribution towards a simpler modelling and diagnosis of the multidisciplinary hybrid systems. Hybrid renewable energy systems where hydrogen is used to store the surplus of the power fits perfectly under this description. Such system gathers different energetic components that are needed to be connected or disconnected according to different operating conditions. These different switching configurations generate different operating modes and depend on the intermittency of the primary sources, the storage capacities and the operational availability of the different hardwares that constitute the system. The switching behaviour engenders a variable dynamic which is hard to be expressed mathematically without investigating all the operating modes. This modelling difficulty is transmitted to affect all the model-based tasks such as the diagnosis and the operating mode management. To solve this problematic, a new modelling tool, called event-driven hybrid bond graph, is developed. Entirely graphic, this formalism allows a multidisciplinary global modelling for all the operating modes at once. By separating the continuous dynamic driven by the bond graph, from the discrete states handled by an integrated automaton, this approach simplifies the management of the operating modes. The model issued using this methodology is also well-adapted to perform a robust diagnosis which is achievable without referring back to the analytical description of the model. The operating mode management, when associated with the on-line diagnosis, allows the implementation of reconfiguration strategies and protection protocols when faults are detected.
Identifer | oai:union.ndltd.org:theses.fr/2017LIL10104 |
Date | 23 November 2017 |
Creators | Abdallah, Ibrahim |
Contributors | Lille 1, Ould Bouamama, Belkacem, Gehin, Anne-Lise |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds