Return to search

Entwicklung neuer stimuli-sensitiver Hydrogelfilme als Plattform für die Biosensorik / Development of new stimuli-sensitive hydrogel films designed as platform for biosensors

Diese Arbeit befasst sich mit der Synthese und der Charakterisierung von thermoresponsiven Polymeren und ihrer Immobilisierung auf festen Oberflächen als nanoskalige dünne Schichten. Dabei wurden thermoresponsive Polymere vom Typ der unteren kritischen Entmischungstemperatur (engl.: lower critical solution temperature, LCST) verwendet. Sie sind bei niedrigeren Temperaturen im Lösungsmittel gut und nach Erwärmen oberhalb einer bestimmten kritischen Temperatur nicht mehr löslich; d. h. sie weisen bei einer bestimmten Temperatur einen Phasenübergang auf. Als Basismaterial wurden verschiedene thermoresponsive und biokompatible Polymere basierend auf Diethylenglykolmethylethermethacrylat (MEO2MA) und Oligo(ethylenglykol)methylethermethacrylat (OEGMA475, Mn = 475 g/ mol) über frei radikalische Copolymerisation synthetisiert. Der thermoresponsive Phasenübergang der Copolymere wurde in wässriger Lösung und in gequollenen vernetzten dünnen Schichten beobachtet. Außerdem wurde untersucht, inwiefern eine selektive Proteinbindung an geeignete funktionalisierte Copolymere die Phasenübergangstemperatur beeinflusst.
Die thermoresponsiven Copolymere wurden über photovernetzbare Gruppen auf festen Oberflächen immobilisiert. Die nötigen lichtempfindlichen Vernetzereinheiten wurden mittels des polymerisierbaren Benzophenonderivates 2 (4 Benzoylphenoxy)ethylmethacrylat (BPEM) in das Copolymer integriert. Dünne Filme der Copolymere mit ca. 100 nm Schichtdicke wurden über Rotationsbeschichtung auf Siliziumwafer aufgeschleudert und anschließend durch Bestrahlung mit UV Licht vernetzt und auf der Oberfläche immobilisiert. Die Filme sind stabiler je größer der Vernetzeranteil und je größer die Molmasse der Copolymere ist. Bei einem Waschprozess nach der Vernetzung wird beispielsweise aus einem Film mit moderater Molmasse und geringem Vernetzeranteil mehr unvernetztes Copolymer ausgewaschen als bei einem höhermolekularen Copolymer mit hohem Vernetzeranteil. Die Quellbarkeit der Polymerschichten wurde mit Ellipsometrie untersucht. Sie ist größer je geringer der Vernetzeranteil in den Copolymeren ist. Schichten aus thermoresponsiven OEG Copolymeren zeigen einen Volumenphasenübergang vom Typ der LCST. Der thermoresponsive Kollaps der Schichten ist komplett reversibel, die Kollapstemperatur kann über die Zusammensetzung der Copolymere eingestellt werden. Für einen Vergleich dieser Eigenschaften mit dem gut charakterisierten und derzeit wohl am häufigsten untersuchten thermoresponsiven Polymer Poly(N-isopropylacrylamid) (PNIPAM) wurden zusätzlich photovernetzte Schichten aus PNIPAM hergestellt und ebenfalls ellipsometrisch vermessen. Im Vergleich zu PNIPAM verläuft der Phasenübergang der Schichten aus den Copolymeren mit Oligo(ethylenglykol)-seitenketten (OEG Copolymere) über einen größeren Temperaturbereich.
Mit Licht einer Wellenlänge > 300 nm wurden die photosensitiven Benzophenongruppen selektiv angeregt. Bei der Verwendung kleinerer Wellenlängen vernetzten die Copolymerschichten auch ohne die Anwesenheit der lichtempfindlichen Benzophenongruppen. Dieser Effekt ließ sich zur kontrollierten Immobilisierung und Vernetzung der OEG Copolymere einsetzen. Als weitere Methode zur Immobilisierung der Copolymere wurde die Anbindung über Amidbindungen untersucht. Dazu wurden OEG Copolymere mit dem carboxylgruppenhaltigen 2 Succinyloxyethylmethacrylat (MES) auf mit 3 Aminopropyldimethylethoxysilan (APDMSi) silanisierte Siliziumwafer rotationsbeschichtet, und mit dem oligomeren α, ω Diamin Jeffamin® ED 900 vernetzt. Die Vernetzungsreaktion erfolgte ohne weitere Zusätze durch Erhitzen der Proben. Die Hydrogelschichten waren anschließend stabil und zeigten neben thermoresponsivem auch pH responsives Verhalten.
Um zu untersuchen, ob die Phasenübergangstemperatur durch eine Proteinbindung beeinflusst werden kann, wurde ein polymerisierbares Biotinderivat 2 Biotinyl-aminoethylmethacrylat (BAEMA) in das thermoresponsive Copolymer eingebaut. Der Einfluss des biotinbindenen Proteins Avidin auf das thermoresponsive Verhalten des Copolymers in Lösung wurde untersucht. Die spezifische Bindung von Avidin an das biotinylierte Copolymer verschob die Übergangstemperatur deutlich zu höheren Temperaturen. Kontrollversuche zeigten, dass dieses Verhalten auf eine selektive Proteinbindung zurückzuführen ist.
Thermoresponsive OEG Copolymere mit photovernetzbaren Gruppen aus BPEM und Biotingruppen aus BAEMA wurden über Rotationsbeschichtung auf Gold- und auf Siliziumoberflächen aufgetragen und durch UV Strahlung vernetzt. Die spezifische Bindung von Avidin an die Copolymerschicht wurde mit Oberflächenplasmonenresonanz und Ellipsometrie untersucht. Die Bindungskapazität der Schichten war umso größer, je kleiner der Vernetzeranteil, d. h. je größer die Maschenweite des Netzwerkes war. Die Quellbarkeit der Schichten wurde durch die Avidinbindung erhöht. Bei hochgequollenen Systemen verursachte eine Mehrfachbindung des tetravalenten Avidins allerdings eine zusätzliche Quervernetzung des Polymernetzwerkes. Dieser Effekt wirkt der erhöhten Quellbarkeit durch die Avidinbindung entgegen und lässt die Polymernetzwerke schrumpfen. / This work describes the synthesis and characterization of thermoresponsive polymers and their immobilisation on solid substrates as nanoscale thin films. The used polymers were of the lower critical solution temperature (LCST) type. They are well soluble in a solvent below a and get insoluble above a certain temperature, thus they exhibit a phase transition at a critical temperature. Different thermoresponsive biocompatible copolymers based on oligo(ethylene glycol) methyl ether methacrylate (OEGMA475) and di(ethylene glycol) methyl ether methacrylate (MEO2MA) were synthesized by free radical polymerization. The phase transition was observed in solution and in thin immobilized copolymer layers. Further regarding the phase transition the influence of selective protein binding onto functionalized copolymers was studied.
Solid surfaces were modified with thermoresponsive copolymers based on MEO2MA, OEGMA475 and 2 (4 benzoylphenoxy)ethyl methacrylate (BPEM) as photo crosslinkable groups. Thin films of 100 nm thickness were spin-casted onto silicon wafers and subsequently crosslinked and immobilized by irradiation with UV-light. Their stability is controlled by the crosslinker ratio and by the molar mass of the copolymers. For instance a washing process after crosslinking removes more unbound polymer if the polymer contains less crosslinker and has a lower molecular weight. The swellability of the films was investigated by ellipsometry. It gets higher with lower crosslinker ratio. Layers of thermoresponsive copolymers exhibited a swelling/ deswelling phase transition of the lower critical solution temperature (LCST) type. The transition is completely reversible and the transition temperature can be adjusted by the composition of the copolymers. Compared to similarly synthesized photo-crosslinked layers of the well investigated thermoresponsive copolymer poly-(N-isopropyl acrylamide) (PNIPAM) the phase transition exceeds a larger temperature range.
The photo-crosslinking of the OEG copolymers was accomplished in a controlled manner with light of wavelengths > 300 nm. Light of smaller wavelengths crosslinked the copolymer layers even without the presence of photosensitive groups. This effect could be exploited for a controlled immobilization and crosslinking of the OEG copolymers. As further method for crosslinking the formation of amide bonds was investigated. Therefore OEG copolymers containing 2 succinyloxyethyl methacrylate (MES) were spin-casted onto silicon substrates silanized with (3 aminopropyl)dimethylethoxysilane (APDMSi) and crosslinked with oligomeric α, ω diamine Jeffamin® ED 900. The crosslinking reaction was carried out by annealing the dry substrate. No further additives were added for the reaction. After annealing the hydrogel layers were stable against washing and showed thermoresponsive and pH responsive behaviour.
In order to investigate whether the phase transition can be affected by specific protein binding, a polymerizable biotin derivative biotinyl-2-aminoethyl methacrylate (BAEMA) was integrated into the base thermoresponsive OEG copolymer. The influence of avidin on its thermoresponsive behaviour was investigated. The specific binding of avidin to the bioitinylated copolymer caused a marked shift of the transition temperature to higher temperatures. Control experiments proved that this effect can be ascribed to a specific protein binding.
Thermoresponsive OEG Copolymers with photo-crosslinkable groups from BPEM and biotin groups from BAEMA were spin casted onto gold and silicon substrates and subsequently crosslinked by irradiation with UV light. The specific binding of Avidin onto the copolymer layer was investigated by surface plasmon resonance spectroscopy and ellipsometry. The binding capacity was higher if the mesh size of the hydrogel layers was higher. Upon binding of the Avidin the swellability of the layers was increased. At temperatures below the phase transition for loosely crosslinked copolymer layers an additional crosslinking effect of Avidin was observed. This effect counteracts the swelling of the hydrogel and leads to a shrinkage of the hydrogel layer.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:6626
Date January 2013
CreatorsBuller, Jens
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Chemie
Source SetsPotsdam University
LanguageGerman
Detected LanguageEnglish
TypeText.Thesis.Doctoral
Formatapplication/pdf
Rightshttp://creativecommons.org/licenses/by-nc-sa/3.0/de/

Page generated in 0.0031 seconds