Return to search

Immobilization of cytochrome P450 BM3 from Bacillus megaterium on magnetic nanoparticles to develop an effective biocatalyst for hydroxylation reactions

Les catalyseurs chimiques sont utilisés dans différents procédés de synthèse. Cependant, la pollution qu'ils causent sur l'environnement n’est pas prise en considération. Les procédés de synthèse chimique nécessitent généralement un grand volume de solvants organiques, produisant d’énormes quantités de déchets chimiques, souvent toxiques et non dégradables. Le remplacement des catalyseurs chimiques par des biocatalyseurs (enzymes) pourrait donc bénéficier de leur nature écologique et de leur grande sélectivité envers les produits désirés. Néanmoins, la faible activité et stabilité des enzymes ainsi que leurs coûts élevés sont des obstacles majeurs au développement des systèmes enzymatiques. Par conséquent, des études axées sur le développement de systèmes biocatalytiques plus actifs, stables et rentables, pouvant ouvrir les portes vers un environnement plus vert, sont très souhaitables. Parmi les enzymes qui catalysent des réactions d’importance dans de nombreux procédés de synthèse, le cytochrome P450 BM3 issu de Bacillus megaterium fait l'objet de cette thèse. L'enzyme est capable d’hydroxyler les liaisons C–H des acides gras (C₁₂-C₂) à température ambiante et pH physiologique. Pour cette réaction, BM3 n'a besoin que d’oxygène et de deux électrons habituellement obtenus de son cofacteur naturel, le NADPH. Cependant, pour engager cette enzyme dans les réactions d'hydroxylation, quelques obstacles importants doivent être surmontés : (i) le cofacteur coûteux (NADPH), devrait être remplacé par une source d'électrons moins chère ou régénérée, (ii) la stabilité enzymatique devrait être améliorée et (iii) l'enzyme devrait être facilement récupérable du milieu de réaction pour être réutilisée. Dans ce contexte, cette étude propose pour la première fois l'immobilisation d'un BM3 sur des nanoparticules magnétiques (NMP) d’oxyde de fer. Ce système enzymatique bénéficie (i) de la préférence de l'enzyme pour les cofacteurs NADH et BNAH (moins chers que le NADPH), (ii) de la réutilisation facile du biocatalyseur et (iii) d’une stabilité significative de l’enzyme lors du stockage. Les NMP synthétisées ont été fonctionnalisées pour permettre l’immobilisation de l'enzyme par adsorption ou liaison covalente. Par conséquent, les BM3-NMP adsorbées / réticulées ou liées de façon covalente ont été obtenues en immobilisant P450 BM3 (R966D / W1046S) sur Ni²⁺-PMIDA-NMP ou sur des NMP activés par glutaraldéhyde, respectivement. / L'activité de l’enzyme immobilisée a été comparée avec celle de l’enzyme libre dans la réaction d'hydroxylation du 10-pNCA comme substrat modèle. L'acide myristique a également été utilisé comme substrat modèle pour confirmer la capacité d’hydroxylation sélective de l’enzyme sur les atomes de carbone ω-1, -2 ou -3. Pour les mêmes conditions opératoires, le BM3 adsorbé / réticulé a montré plus de 85% de l'activité de l’enzyme libre, alors que pour les BM3-NMP liées de manière covalente cela représente 60%. La séparation facile des NMP du milieu réactionnel à l’aide d’un aimant a permis de réutiliser le système enzymatique cinq fois consécutives. Après 5 cycles de réaction, l'enzyme réticulée a conservé 100% de son activité initiale. Compte tenu que le recyclage de l’enzyme libre n’est pas faisable, ce résultat est d’une importance considérable dans les applications pratiques. De plus, la stabilité de l’enzyme pendant un mois de stockage à 4 ºC a été évaluée pour chaque système de BM3. Les résultats ont montré que l’enzyme libre n’était plus active après seulement une semaine de stockage dans ces conditions. L'enzyme réticulée n'a montré qu'une activité relative de 41% après un mois de stockage, mais pour le BM3 fixée de façon covalente, la valeur correspondante a été de 80%. La cinétique de l'hydroxylation du 10-pNCA en présence de l’enzyme libre ou immobilisée a été également étudiée. Sur la base des données expérimentales, un modèle de Hill (coefficient de Hill égal à 2) a été obtenu pour l'enzyme libre. Il a été démontré que les mêmes paramètres cinétiques sont capables de prédire le comportement du système BM3-adsorbé et BM3-réticulé dans la réaction d’hydroxylation, étant donné sa similarité avec celui de l’enzyme libre. En conclusion, les résultats de cette thèse ont montré qu'un système enzymatique actif, stable et rentable peut être obtenu en immobilisant le BM3 sur des NMP fonctionnalisées. Il bénéficie autant des avantages de l'enzyme que du support. Ainsi, l'immobilisation sur des NMP d’une enzyme spécialement conçue pour remplacer le couteux NADPH par des cofacteurs moins chers mais efficaces (NADH et BNAH) offre en même temps une amélioration significative de sa stabilité et facilite son recyclage. / MNPs have been synthesized and surface functionalized to attach the enzyme via two different methods, adsorption and covalent binding. Moreover, glutaraldehyde was used to treat the adsorbed enzyme molecules on MNPs (crosslinking-adsorption). Therefore, adsorbed, crosslinked-adsorbed, or covalently bound BM3-MNPs were obtained by immobilizing P450 BM3 on synthesized Ni²⁺-functionalized MNPs or glutaraldehyde pre-activated MNPs, respectively. The immobilized enzyme activity was compared to its free counterpart in hydroxylation reaction of 10-pNCA (10-(4-Nitrophenoxy) decanoic acid) as a substrate model. Myristic acid was also used as a substrate model to confirm the enzyme selective hydroxylation at ω-1, -2, or -3 carbon positions. The effect of cofactor (NADH and its analogue, BNAH) on the enzyme activity was also investigated. The adsorbed/crosslinked-adsorbed BM3 showed more than 85% of the free enzyme activity while the covalently bound BM3-MNPs presented 60% of the free enzyme activity under the same reaction conditions. An important feature of BM3-MNPs system is the possibility of recycling the biocatalyst. Facile separation of the magnetic nanoparticles from the reaction medium by applying a magnet provided the opportunity of reusing the enzymatic system for five times. After 5 cycles of reaction, the crosslinked-adsorbed enzyme retained 100% of its initial activity. Although the covalently bound enzyme showed, only half of the crosslinked-adsorbed enzyme activity, its storage stability was more significant. Taking into account that the enzyme reuse is an essential concern in many large-scale applications and the free BM3 cannot be recovered and reused, this result is noteworthy. Storage stability tests revealed that the free enzyme became inactive after one-week while the crosslinked-adsorbed enzyme and the covalently attached BM3 on MNPs showed 41% and 80% relative activity after one month, respectively. Finally, the steady-state kinetics of 10-pNCA hydroxylation by free and immobilized BM3 was investigated. Based on the experimental data, a non-Michaelis-Menten, Hill model (Hill coefficient of 2) was obtained for the free enzyme which could also predict the adsorbed and crosslinked-adsorbed BM3-MNPs system performance. This sigmoidal behavior was found to be independent of enzyme concentration and type of cofactor. However, since the enzyme activity was only 60% of the free enzyme for covalently bound BM3, further studies are necessary for a better understanding of this system. In summary, the results of this thesis show that an active, stable, and cost-effective BM3-MNPs system can be obtained by immobilizing an engineered BM3 on functionalized MNPs. Such systems benefit from the advantages of both enzyme and support. An engineered enzyme can fulfill the desired targets including the replacement of costly NADPH by less-expensive, yet effective cofactors namely NADH and BNAH. Furthermore, immobilization of this enzyme on MNPs improves its stability and facilitates the recycling process. / Chemical catalysts are used in different synthetic processes from lab to industrial scales. High reaction yields usually achieved by this type of processes favor their application in many industries without considering the pollution they cause to the environment. Chemical synthesis processes usually require a high volume of organic solvents and produce tons of chemical wastes which are often toxic and not degradable. Replacing conventional catalysts by biocatalysts (enzymes) can benefit from their environmentally friendly nature and high selectivity toward the desired products. Although the advantages of biocatalysts over chemical catalysts have been proven, the application of enzymes in an industrial level is still not considerable. The enzyme low activity, stability, and high cost are the main concerns in developing large-scale enzymatic systems. Therefore, in the context of a greener environment, studies focusing on the development of more active, stable, and cost-effective enzymatic systems are in great demand. Among several enzymes that can catalyze essential synthesis reactions, cytochrome P450 BM3 from Bacillus megaterium is the subject of this thesis. This enzyme hydroxylates the saturated and unsaturated C–H bonds of medium to long chain fatty acids at room temperature and physiological pH. For this reaction, BM3 only needs molecular oxygen and two electrons usually obtained from its natural cofactor, NADPH. However, to engage this enzyme in hydroxylation reactions, some important obstacles should be overcome: (i) the costly cofactor (NADPH) should be replaced by a cheaper source of electrons or regenerated, (ii) the enzyme stability should be improved, and (iii) the enzyme should be easily recovered from the reaction medium to be reused. In this context, this study proposes for the first time the immobilization of an optimized BM3 mutant on functionalized iron oxide magnetic nanoparticles (MNPs). This enzymatic system benefits from (i) the enzyme preference towards cofactors like the reasonably priced NADH and the very cheap BNAH, (ii) facile recovery and reuse of the biocatalyst (enzyme-MNPs), and (iii) the enzyme significant storage stability.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/34494
Date18 April 2019
CreatorsBahrami, Atieh
ContributorsLarachi, Faïcal, Garnier, Alain, Iliuta, Maria-Cornélia
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxiv, 174 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0039 seconds