Prenumerationstjänster blir alltmer populära i dagens samhälle. En av nycklarna för att lyckas med en prenumerationsbaserad affärsmodell är att minimera kundbortfall (eng. churn), dvs. kunder som avslutar sin prenumeration inom en viss tidsperiod. I och med den ökande digitaliseringen, är det nu enklare att samla in data än någonsin tidigare. Samtidigt växer maskininlärning snabbt och blir alltmer lättillgängligt, vilket möjliggör nya infallsvinklar på problemlösning. Denna rapport kommer testa och utvärdera ett försök att förutsäga kundbortfall med hjälp av maskininlärning, baserat på kunddata från ett företag med en prenumerationsbaserad affärsmodell där prenumeranten får besöka live-event till en fast månadskostnad. De maskininlärningsmodeller som användes i testerna var Random Forests, Support Vector Machines, Logistic Regression, och Neural Networks som alla tränades med användardata från företaget. Modellerna gav ett slutligt träffsäkerhetsresultat i spannet mellan 73,7 % och 76,7 %. Därutöver tenderade modellerna att ge ett högre resultat för precision och täckning gällande att klassificera kunder som sagt upp sin prenumeration än för de som fortfarande var aktiva. Dessutom kunde det konstateras att de kundegenskaper som hade störst inverkan på klassifikationen var ”Använda Biljetter” och ”Längd på Prenumeration”. Slutligen kommer det i denna rapport diskuteras hur informationen angående vilka kunder som sannolikt kommer avsluta sin prenumeration kan användas ur ett mer affärsmässigt perspektiv. / In today’s world subscription-based online services are becoming increasingly popular. One of the keys to success in a subscription-based business model is to minimize churn, i.e. customer canceling their subscriptions. Due to the digitalization of the world, data is easier to collect than ever before. At the same time machine learning is growing and is made more available. That opens up new possibilities to solve different problems with the use of machine learning. This paper will test and evaluate a machine learning approach to churn prediction, based on the user data from a company with an online subscription service letting the user attend live shows to a fixed price. To perform the tests different machine learning models were used, both individually and combined. The models were Random Forests, Support Vector Machines, Logistic Regression and Neural Networks. In order to train them a data set containing either active or churned users was provided. Eventually the models returned accuracy results ranging from 73.7 % to 76.7 % when classifying churners based on their activity data. Furthermore, the models turned out to have higher scores for precision and recall for classifying the churners than the non-churners. In addition, the features that had the most impact on the model regarding the classification were Tickets Used and Length of Subscription. Moreover, this paper will discuss how churn prediction can be used from a business perspective.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-240397 |
Date | January 2018 |
Creators | Blank, Clas, Hermansson, Tomas |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2018:424 |
Page generated in 0.0026 seconds