Sur l'ensemble des variétés riemanniennes compactes à courbure de Ricci positive (on normalise par $Ric \geq (n-1)g$), la première valeur propre non nulle du laplacien agissant sur les fonctions atteint son minimum uniquement pour la sphère canonique. Dans cette thèse, nous caractérisons, à l'aide de la distance de Gromov-Hausdorff, les variétés riemanniennes à courbure positive dont les premières valeurs propres du laplacien sont proches de celles de la sphère canonique. Cette propriété de minimimalité du spectre de la sphère s'étend par un procédé de symétrisation, au spectre de Dirichlet des boules géodésiques de la sphère parmi les domaines de variétés à courbure de Ricci positive. Nous étudions les domaines de variétés à courbure de Ricci positive dont la première valeur propre de Dirichlet est presque minimimale. En particulier, nous montrons qu'un domaine convexe dont la première valeur propre de Dirichlet est proche de celle d'un hémisphèere est Gromov-Hausdorff proche d'un hémisphère d'un sinus produit tordu.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00008705 |
Date | 19 September 2003 |
Creators | Bertrand, Jerome |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0016 seconds