El concepte d'igualtat és fonamental en qualsevol teoria donat que és una noció essencial a l'hora de discernir entre els elements objecte del seu estudi i possibilitar la definició de mecanismes de classificació.Quan totes les propietats són perfectament precises (absència d'incertesa), hom obtè la igualtat clàssica a on dos objectes són considerats iguals si i només si comparteixen el mateix conjunt de propietats. Però, què passa quan considerem l'aparició d'incertesa, com en el cas a on els objectes compleixen una determinada propietat només fins a un cert grau?. Llavors, donat que alguns objectes seran més similars entre si que d'altres, sorgeix la necessitat de una noció gradual del concepte d'igualtat.Aquestes consideracions refermen la idea de que certs contextos requereixen una definició més flexible, que superi la rigidesa de la noció clàssica d'igualtat. Els operadors de T-indistingibilitat semblen bons candidats per aquest nou tipus d'igualtat que cerquem.D'altra banda, La Teoria de l'Evidència de Dempster-Shafer, com a marc pel tractament d'evidències, defineix implícitament una noció d'indistingibilitat entre els elements del domini de discurs basada en la seva compatibilitat relativa amb l'evidència considerada. El capítol segon analitza diferents mètodes per definir l'operador de T-indistingibilitat associat a una evidència donada.En el capítol tercer, després de presentar un exhaustiu estat de l'art en mesures d'incertesa, ens centrem en la qüestió del còmput de l'entropia quan sobre els elements del domini s'ha definit una relació d'indistingibilitat. Llavors, l'entropia hauria de ser mesurada no en funció de l'ocurrència d'events diferents, sinó d'acord amb la variabilitat percebuda per un observador equipat amb la relació d'indistingibilitat considerada. Aquesta interpretació suggereix el "paradigma de l'observador" que ens porta a la introducció del concepte d'entropia observacional.La incertesa és un fenomen present al món real. El desenvolupament de tècniques que en permetin el tractament és doncs, una necessitat. La 'computació amb paraules' ('computing with words') pretén assolir aquest objectiu mitjançant un formalisme basat en etiquetes lingüístiques, en contrast amb els mètodes numèrics tradicionals. L'ús d'aquestes etiquetes millora la comprensibilitat del llenguatge de representació delconeixement, a l'hora que requereix una adaptació de les tècniques inductives tradicionals.En el quart capítol s'introdueix un nou tipus d'arbre de decisió que incorpora les indistingibilitats entre elements del domini a l'hora de calcular la impuresa dels nodes. Hem anomenat arbres de decisió observacionals a aquests nou tipus, donat que es basen en la incorporació de l'entropia observacional en la funció heurística de selecció d'atributs. A més, presentem un algorisme capaç d'induir regles lingüístiques mitjançant un tractament adient de la incertesa present a les etiquetes lingüístiques o a les dades mateixes. La definició de l'algorisme s'acompanya d'una comparació formal amb altres algorismes estàndards. / The concept of equality is a fundamental notion in any theory since it is essential to the ability of discerning the objects to whom it concerns, ability which in turn is a requirement for any classification mechanism that might be defined. When all the properties involved are entirely precise, what we obtain is the classical equality, where two individuals are considered equal if and only if they share the same set of properties. What happens, however, when imprecision arises as in the case of properties which are fulfilled only up to a degree? Then, because certain individuals will be more similar than others, the need for a gradual notion of equality arises.These considerations show that certain contexts that are pervaded with uncertainty require a more flexible concept of equality that goes beyond the rigidity of the classic concept of equality. T-indistinguishability operators seem to be good candidates for this more flexible and general version of the concept of equality that we are searching for.On the other hand, Dempster-Shafer Theory of Evidence, as a framework for representing and managing general evidences, implicitly conveys the notion of indistinguishability between the elements of the domain of discourse based on their relative compatibility with the evidence at hand. In chapter two we are concerned with providing definitions for the T-indistinguishability operator associated to a given body of evidence.In chapter three, after providing a comprehensive summary of the state of the art on measures of uncertainty, we tackle the problem of computing entropy when an indistinguishability relation has been defined over the elements of the domain. Entropy should then be measured not according to the occurrence of different events, but according to the variability perceived by an observer equipped with indistinguishability abilities as defined by the indistinguishability relation considered. This idea naturally leads to the introduction of the concept of observational entropy.Real data is often pervaded with uncertainty so that devising techniques intended to induce knowledge in the presence of uncertainty seems entirely advisable.The paradigm of computing with words follows this line in order to provide a computation formalism based on linguistic labels in contrast to traditional numerical-based methods.The use of linguistic labels enriches the understandability of the representation language, although it also requires adapting the classical inductive learning procedures to cope with such labels.In chapter four, a novel approach to building decision trees is introduced, addressing the case when uncertainty arises as a consequence of considering a more realistic setting in which decision maker's discernment abilities are taken into account when computing node's impurity measures. This novel paradigm results in what have been called --observational decision trees' since the main idea stems from the notion of observational entropy in order to incorporate indistinguishability concerns. In addition, we present an algorithm intended to induce linguistic rules from data by properly managing the uncertainty present either in the set of describing labels or in the data itself. A formal comparison with standard algorithms is also provided.
Identifer | oai:union.ndltd.org:TDX_UPC/oai:www.tdx.cat:10803/6648 |
Date | 12 January 2007 |
Creators | Hernández Jiménez, Enric |
Contributors | Recasens Ferrés, Jordi, Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics |
Publisher | Universitat Politècnica de Catalunya |
Source Sets | Universitat Politècnica de Catalunya |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | application/pdf |
Source | TDX (Tesis Doctorals en Xarxa) |
Rights | info:eu-repo/semantics/openAccess, ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. |
Page generated in 0.0028 seconds