Many industries have entered a new global phase which takes the environment in mind. The gas turbine industry is no exception, where the utilization of green fuels is the future to spare the environment from carbon dioxide and NOx emissions. Hydrogen has been identified as a fuel which can fulfil the global requirements set by governments worldwide. Combustion instabilities are not inevitable during gas turbine operations, especially when using a highly reactive and diffusive fuel as hydrogen. These thermoacoustics instabilities can damage mechanical components and have economic consequences in terms of maintenance and reparation. Understanding these thermoacoustic instabilities in gas turbine burners is of great interest. COMSOL Multiphysics offers a robust acoustic module compared to other available acoustic simulation programs. In this thesis, an Acoustic finite element model was built representing an atmospheric combustion rig (ACR), used to test the burners performance and NOx emissions. Complementary computational fluid dynamics (CFD) simulations were performed for 100 % hydrogen as fuel by using the Reynolds average Navier-Stokes (RANS) lag EB k - epsilon turbulence model. Necessary data was successfully imported to the Acoustic finite element model. Different techniques of building the mesh were used in COMSOL Multiphysics and NX. Similar results were obtained, proving that both mesh tools work well in acoustic simulations. Two different ways of solving the eigenvalue problem in acoustics were implemented, the classic Helmholtz equation and Linearized Navier-Stokes equations, both in the frequency domain. The Helmholtz equation proved to be efficient and detected multiple modes in the frequency range of interest. Critical modes which lived in the burner and the combustion chamber were identified. Defining a hard and soft wall boundary condition at the inlets and outlet of the atmospheric combustion rig gave similar eigenfrequencies when comparing the two boundary conditions. The soft wall boundary condition was defined with a characteristic impedance, giving a high uncertainty whether the results were trustworthy or not. A boundary condition study revealed that the boundary condition at the outlet was valid for modes living in the burner and combustion chamber. Solving the eigenvalue problem with the Linearized Navier-Stokes equations proved to be computationally demanding compared to the Helmholtz equation. Similar modes shapes were found at higher frequencies, but pressure perturbations were observed in the region where the turbulence was dominant. A prestudy for a stability analysis was established, where the ACR and the flame was represented as a generic model. Implementing a Flame Transfer Function (FTF), more specifically a linear n - tau model, showed that the time delay tau is most sensible for a parametric change and hence needs to be chosen cautiously
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-79244 |
Date | January 2020 |
Creators | Gutiérrez, Daniel |
Publisher | Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds