O desenvolvimento de métodos para o tratamento de omissões nos dados é recente na estatística e tem sido alvo de muitas pesquisas. A presença de omissões em covariáveis é um problema comum na análise estatística e, em particular nos modelos de análise de sobrevivência, ocorrendo com freqüência em pesquisas clínicas, epidemiológicas e ambientais. Este trabalho apresenta propostas bayesianas para a análise de dados de sobrevivência com omissões nas covariáveis considerando modelos paramétricos da família Weibull e o modelo semi-paramétrico de Cox. Os métodos estudados foram avaliados tanto sob o enfoque paramétrico quanto o semiparamétrico considerando um conjunto de dados de portadores de insuficiência cardíaca. Além disso, é desenvolvido um estudo para avaliar o impacto de diferentes proporções de omissão. / The development of methods dealing with missing data is recent in Statistics and is the target of many researchers. The presence of missing values in the covariates is very common in statistical analysis and, in particular, in clinical, epidemiological and enviromental studies for survival data. This work considers a bayesian approach to analise data with missing covariates for parametric models in the Weibull family and for the Cox semiparametric model. The studied methods are evaluated for the parametric and semiparametric approaches considering a dataset of patients with heart insufficiency. Also, the impact of different omission proportions is assessed.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-05052007-174318 |
Date | 14 March 2007 |
Creators | Polli, Demerson Andre |
Contributors | Lima, Antonio Carlos Pedroso de |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0019 seconds