Le projet LIGO a pour but la détection et l'étude d'ondes gravitationnelles via un réseau de détecteurs. LIGO possède deux détecteurs d'architecture et de fonctionnement identiques, situés aux États-Unis. Chaque détecteur est une version améliorée d'un interféromètre de Michelson avec des bras optiques de 4 km de long. Ces interféromètres ont observé une onde gravitationnelle pour la première fois en septembre 2015, suivi par cinq autres détections à ce jour. Ces détections marquent le début d™une nouvelle ère pour l'astrophysique, en liaison étroite avec la physique des trous noirs et des étoiles à neutrons. Depuis, un grand nombre d'activités sont en développement pour perfectionner les interféromètres. Cette thèse a pour objectif d'améliorer le temps de service des détecteurs, en répondant en particulier à deux problématiques majeures : le problème des impacts environnementaux, et notamment celui des tremblements de terre, ainsi que le problème lié à des couplages opto-mécaniques instables dans les cavités optiques, appelés instabilités paramétriques. Les stratégies de contrôle et les outils développés pour résoudre ces problématiques sont présentés. Les résultats prémilinaires montrent une réduction du temps d'arrêt généré par les tremblements de terre d'environ 40%. De plus, le dispositif ‚Acoustic Mode Damper™ développé pendant la thèse devrait complètement résoudre le problème des instabilités paramétriques pour LIGO. En conclusion, il sera démontré en quoi les problématiques résolues ont permis d'améliorer le cycle de service des détecteurs de LIGO de 4,6%, ce qui correspond à une augmentation du nombre d'ondes gravitationnelles détectées par an de 14%. / The LIGO project is a large-scale physics experiment the goal of which is to detect and study gravitational waves of astrophysical origin. It is composed of two instruments identical in design, located in the United States. The two instruments are specialized versions of a Michelson interferometer with 4km-long arms. They observed a gravitational-wave signal for the first time in September 2015 from the merger of two stellar-mass black holes. This is the first direct detection of a gravitational wave and the first direct observation of a binary black hole merger. Five more detections from binary black hole mergers and neutron stars merger have been reported to date, marking the beginning of a new era in astrophysics. As a result of these detections, many activities are in progress to improve the duty cycle and sensitivity of the detectors. This thesis addresses two major issues limiting the duty cycle of the LIGO detectors: environmental impacts, especially earthquakes, and the issue of unstable opto-mechanical couplings in the cavities, referred to as parametric instabilities. The control strategies and tools developed to tackle these issues are presented. Early results have shown a downtime reduction during earthquakes of ~40% at one of the LIGO sites. Moreover, the electro-mechanical device called ‚Acoustic Mode Damper™ designed and tested during the thesis should completely solve the issue of parametric instabilities for LIGO. In conclusion, we will show that the problems tackled in this thesis improved the overall duty cycle of LIGO by 4.6%, which corresponds to an increase of the gravitational-wave detection rate by 14%.
Identifer | oai:union.ndltd.org:theses.fr/2018LEMA1019 |
Date | 21 September 2018 |
Creators | Biscans, Sébastien |
Contributors | Le Mans, Pézerat, Charles, Picart, Pascal, Evans, Matthew |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds