Return to search

Aplicação de métodos computacionais multidisciplinares de engenharia para otimização de carteiras de investimentos. / Application of multidisciplinary engineering methods to optimize investment portfolios.

Este trabalho apresenta uma nova metodologia para otimizar carteiras de ativos financeiros. A metodologia proposta, baseada em interpoladores universais tais quais as Redes Neurais Artificiais e a Krigagem, permite aproximar a superfície de risco e consequentemente a solução do problema de otimização associado a ela de forma generalizada e aplicável a qualquer medida de risco disponível na literatura. Além disto, a metodologia sugerida permite que sejam relaxadas hipóteses restritivas inerentes às metodologias existentes, simplificando o problema de otimização e permitindo que sejam estimados os erros na aproximação da superfície de risco. Ilustrativamente, aplica-se a metodologia proposta ao problema de composição de carteiras com a Variância (controle), o Valor-em-Risco (VaR) e o Valor-em-Risco Condicional (CVaR) como funções objetivo. Os resultados são comparados àqueles obtidos pelos modelos de Markowitz e Rockafellar, respectivamente. / This work presents a new methodology for optimizing financial asset portfolios. The proposed methodology, based on universal interpolators such as Artificial Neural Networks and the Kriging Method, allows for approximating the risk surface - and thus the optimal solution to the problem - in a generalized fashion and applicable to any risk measure known in literature, relaxing every restrictive hypothesis inherent to the available methods and with the ability to estimate the error in the approximation. Illustratively, the proposed methodology is applied to the portfolio problem with the Variance (control), Value-at-Risk and Conditional Value-at-Risk as objective functions. Results are compared to those obtained by Markowitz and Rockafellar models, respectively.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-14072016-152635
Date14 April 2015
CreatorsBarrosa, Marcelo Rosario da
ContributorsRibeiro, Celma de Oliveira
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0024 seconds