La modélisation des propulseurs ioniques de type SPT pose de nombreux <br />problèmes dans le domaine du transport des particules chargées. Nous nous <br />intéressons à deux de ces problèmes, à savoir le transport des électrons et <br />le calcul du potentiel électrique.<br /><br />Le transport des électrons résulte de l'influence conjuguée des champs <br />(électrique et magnétique) établis dans la cavité du propulseur et des <br />collisions des électrons (dans la cavité et avec la paroi limitant celle-ci). <br />Nous avons participé au développement d'un modèle SHE (Spherical Harmonics <br />Expansion) qui résulte d'une analyse asymptotique de l'équation de Boltzmann <br />munie de conditions de réflexion aux bords. Ce modèle permet d'approcher la <br />fonction de distribution en énergie des électrons en résolvant une <br />équation de diffusion dans un espace \{position, énergie\}. Plus précisément, <br />nous avons étendu une démarche existante au cas où les collisions en volume <br />(excitation, ionisation) et les collisions inélastiques à la paroi <br />(attachement et émission secondaire) sont prises en compte. Enfin, nous <br />avons écrit un code de résolution du modèle SHE, dont les résultats ont <br />été comparés avec ceux d'une méthode de Monte Carlo. <br /><br />\vspace*{1mm}<br />Dans un deuxième temps, nous avons étudié le calcul du potentiel électrique. <br />La présence du champ magnétique impose d'écrire le courant d'électrons sous <br />la forme ${\cal J}=\sigma \nabla W$<br /> où W est le potentiel électrique et le tenseur de conductivité $\sigma$<br />est fortement anisotrope compte tenu des grandeurs physiques en jeu dans <br />le SPT. Pour résoudre $\mbox{div }{\cal J}(x,y)=S(x,y)$, <br />nous avons implémenté une méthode de volumes finis <br />sur maillage cartésien permettant de résoudre ce problème elliptique <br />anisotrope, et nous avons vérifié qu'elle échouait lorsque le rapport <br />d'anisotropie devenait grand. Aussi nous avons développé une méthode de <br />paramétrisation, qui consiste à extrapoler la solution d'un problème <br />anisotrope à l'aide d'une suite de problèmes isotropes. Cette méthode a <br />donné des résultats encourageants pour de forts rapports d'anisotropie, <br />et devrait nous permettre d'atteindre des cas réels.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00002194 |
Date | 04 July 2001 |
Creators | Latocha, Vladimir |
Publisher | INSA de Toulouse |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0029 seconds