Neste trabalho, provamos um teorema de imersões isométricas em variedades Lorentzianas homogêneas tridimensionais, usando a teoria de G- estruturas. Tais variedades são aquelas consideradas na classificação das 3- variedades Lorentzianas homogêneas de Dumitrescu e Zeghib. Provamos também um teorema de rigidez isométrica para hipersuperfícies em variedades semi-Riemannianas com G-estrutura infinitesimalmente homogêneas. No caso particular em que o ambiente são variedades semi-Riemannianas dadas por produto de uma forma espacial por R ou variedades Riemannianas homogêneas tridimensionais, provamos o mesmo teorema de rigidez isométrica, porém com hipóteses mais fracas. / In this work we prove an isometric embedding theorem in homogeneous Lorentzian manifolds of dimension 3, that were recently classified by Dumitrescu and Zeghib in [11]. We also prove a rigidity result of isometric embeddings of hypersurfaces in semi-Riemannian manifolds endowed with an infinitesimally homogeneous G-structure. In the special case that the semi-Riemannian manifolds are produtcs of the type Q^n_cxR, or Riemannian homogeneous 3-manifolds, the result is proven under wear assumptions.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-01072008-163534 |
Date | 05 May 2008 |
Creators | Fernando Manfio |
Contributors | Paolo Piccione, Levi Lopes de Lima, Francesco Mercuri, Daniel Victor Tausk, Jose Miguel Martins Veloso |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds