Spelling suggestions: "subject:"restructures"" "subject:"destructures""
1 |
Taylorapproximationen und kubische Konstruktionen von [gamma]-ModulnRichter, Birgit, January 2000 (has links)
"Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn." / Includes bibliographical references.
|
2 |
Implantation et nouvelles applications de la méthode d'équivalence de CartanNeut, Sylvain Petitot, Michel. January 2003 (has links) (PDF)
Thèse doctorat : Informatique : Lille 1 : 2003. / N° d'ordre (Lille 1) : 3296. Résumé en français et en anglais. Bibliogr. p. 133-136.
|
3 |
Imersões isométricas em 3-variedades Lorentzianas homogêneas / Isometric immersions into 3-dimensional Lorentzians homogeneous manifoldsManfio, Fernando 05 May 2008 (has links)
Neste trabalho, provamos um teorema de imersões isométricas em variedades Lorentzianas homogêneas tridimensionais, usando a teoria de G- estruturas. Tais variedades são aquelas consideradas na classificação das 3- variedades Lorentzianas homogêneas de Dumitrescu e Zeghib. Provamos também um teorema de rigidez isométrica para hipersuperfícies em variedades semi-Riemannianas com G-estrutura infinitesimalmente homogêneas. No caso particular em que o ambiente são variedades semi-Riemannianas dadas por produto de uma forma espacial por R ou variedades Riemannianas homogêneas tridimensionais, provamos o mesmo teorema de rigidez isométrica, porém com hipóteses mais fracas. / In this work we prove an isometric embedding theorem in homogeneous Lorentzian manifolds of dimension 3, that were recently classified by Dumitrescu and Zeghib in [11]. We also prove a rigidity result of isometric embeddings of hypersurfaces in semi-Riemannian manifolds endowed with an infinitesimally homogeneous G-structure. In the special case that the semi-Riemannian manifolds are produtcs of the type Q^n_cxR, or Riemannian homogeneous 3-manifolds, the result is proven under wear assumptions.
|
4 |
Imersões isométricas em 3-variedades Lorentzianas homogêneas / Isometric immersions into 3-dimensional Lorentzians homogeneous manifoldsFernando Manfio 05 May 2008 (has links)
Neste trabalho, provamos um teorema de imersões isométricas em variedades Lorentzianas homogêneas tridimensionais, usando a teoria de G- estruturas. Tais variedades são aquelas consideradas na classificação das 3- variedades Lorentzianas homogêneas de Dumitrescu e Zeghib. Provamos também um teorema de rigidez isométrica para hipersuperfícies em variedades semi-Riemannianas com G-estrutura infinitesimalmente homogêneas. No caso particular em que o ambiente são variedades semi-Riemannianas dadas por produto de uma forma espacial por R ou variedades Riemannianas homogêneas tridimensionais, provamos o mesmo teorema de rigidez isométrica, porém com hipóteses mais fracas. / In this work we prove an isometric embedding theorem in homogeneous Lorentzian manifolds of dimension 3, that were recently classified by Dumitrescu and Zeghib in [11]. We also prove a rigidity result of isometric embeddings of hypersurfaces in semi-Riemannian manifolds endowed with an infinitesimally homogeneous G-structure. In the special case that the semi-Riemannian manifolds are produtcs of the type Q^n_cxR, or Riemannian homogeneous 3-manifolds, the result is proven under wear assumptions.
|
5 |
Decomposição de fluxos estocasticos / Decomposition of stochastic flowsSilva, Fabiano Borges da 12 August 2018 (has links)
Orientador: Paulo Regis Caron Ruffino / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-12T16:41:27Z (GMT). No. of bitstreams: 1
Silva_FabianoBorgesda_D.pdf: 848923 bytes, checksum: 27f2cf2ad665ac271db23db385dab86f (MD5)
Previous issue date: 2009 / Resumo: Este trabalho consiste basicamente em três níveis de decomposições de fluxos estocásticos: 1) decomposição via G-estruturas; 2) decomposição com componente em trajetórias hamiltonianas e 3) conjugações de fluxos aleatórios ¿Observação: O resumo, na íntegra poderá ser visualizado no texto completo da tese digital. / Abstract: This thesis concerns three different kind of decomposition of stochastic flows: 1) decompositions preserving G-structures; 2) decompositions with a component whose trajectories are hamiltonians and; 3) tensor preserving conjugacies with random time differentiable cociclos
...Note: The complete abstract is available with the full electronic digital thesis or dissertations. / Doutorado / Sistemas Dinamicos / Doutor em Matemática
|
6 |
Integrabilidade de G-Estruturas / Integrability of G-structuresDuarte, Gustavo Ignácio 28 May 2018 (has links)
Esta dissertação tem como objetivo discutir sob quais condições uma G- estrutura é integrável. Primeiro apresentam-se fibrados principais, vetoriais e outras estruturas a elas associados como torção, espaços verticais, espaços horizontais e conexões. Depois apresentam-se a definição de G-estrutura, de integrabilidade de G-estruturas, com exemplos e as respectivas versões de integrabilidade e equivalência de G-estruturas. Finalmente, são descritas condições mais gerais que garantem a integrabilidade de G-estruturas. / This dissertation aims to discuss what are the conditions for the inte- grability of a G-structure. We begin presenting principal bundles, vectoer bundles, associated bundles and other structures related to them like torsion, vertical spaces, horizontal spaces and connections. After this, we present the definition of G-structure, integrability os G-structures with examples ans respectives versions of integrabilities and the equivalence of G-estructures. Finally, we describe more general conditions that ensure the integrability of G-structures.
|
7 |
Integrabilidade de G-Estruturas / Integrability of G-structuresGustavo Ignácio Duarte 28 May 2018 (has links)
Esta dissertação tem como objetivo discutir sob quais condições uma G- estrutura é integrável. Primeiro apresentam-se fibrados principais, vetoriais e outras estruturas a elas associados como torção, espaços verticais, espaços horizontais e conexões. Depois apresentam-se a definição de G-estrutura, de integrabilidade de G-estruturas, com exemplos e as respectivas versões de integrabilidade e equivalência de G-estruturas. Finalmente, são descritas condições mais gerais que garantem a integrabilidade de G-estruturas. / This dissertation aims to discuss what are the conditions for the inte- grability of a G-structure. We begin presenting principal bundles, vectoer bundles, associated bundles and other structures related to them like torsion, vertical spaces, horizontal spaces and connections. After this, we present the definition of G-structure, integrability os G-structures with examples ans respectives versions of integrabilities and the equivalence of G-estructures. Finally, we describe more general conditions that ensure the integrability of G-structures.
|
8 |
Utilisation de la méthode d'équivalence de Cartan dans la construction d'un solveur d'équations différentiellesDridi, Raouf 20 July 2007 (has links) (PDF)
L'implantation actuelle des solveurs d'équations différentielles combine les deux méthodes de classification et de réduction d'ordre. La méthode de classification consiste à tester si l'équation à résoudre figure, modulo un renommage des variables, dans une liste d'équations que l'on sait résoudre. La méthode de réduction d'ordre, basée sur l'analyse des symétries de Lie, est réservée aux équations qui ne font pas partie de cette liste.<br /><br />En pratique, plusieurs difficultés apparaissent. Tout d'abord, le calcul des quadratures ainsi que l'intégration des systèmes d'EDP (même linéaires) n'est pas chose facile. De ce fait, il arrive souvent que le solveur se contente de retourner en sortie des résultats partiels, en particulier lorsque la dimension du (pseudo)groupe de symétries de l'équation à résoudre est petite. Enfonçons le clou : lorsque cette dimension est nulle, les solveurs, tel qu'il sont conçus actuellement, sont incapables d'intégrer ou même de réduire l'ordre de l'équation.<br /><br />Cette thèse s'inscrit donc dans l'effort d'amélioration des solveurs actuels. Nous allons présenter et montrer la faisabilité d'une architecture, totalement nouvelle, pour la conception d'un solveur d'équations différentielles basé sur la méthode d'équivalence de Cartan. Notre solveur utilise les invariants différentiels produits par la méthode de Cartan pour détecter l'existence d'une équation différentielle de la liste de Kamke, équivalente à l'équation que l'on veut résoudre et calculer le changement de variables qui réalise cette équivalence.<br /><br />Ceci dit, le calcul du changement de variables est une question qui peut être délicate. En général, il est solution d'un système d'EDP. Nous montrons que lorsque le pseudo-groupe des transformations autorisées est choisi tel que le pseudo-groupe de symétries de l'équation cible est discret, intuitivement, le changement de variables s'obtient sans intégrer d'équations différentielles uniquement en résolvant des équations algébriques.
|
Page generated in 0.0396 seconds