• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Teorema de holonomia normal

Aguirre, Sergio Julio Chion 30 August 2013 (has links)
Made available in DSpace on 2016-06-02T20:28:28Z (GMT). No. of bitstreams: 1 5611.pdf: 719770 bytes, checksum: 86c089b56af72cff83b5e7b8455ce765 (MD5) Previous issue date: 2013-08-30 / Financiadora de Estudos e Projetos / In this work we will introduce the concept of normal holonomy and restricted normal holonomy of a riemannian submanifold. They are subgroups of the orthogonal matrices that are realized from parallel translating normal vectors, along loops and null-homotopic loops respectively, using the normal connection. We will proof that the restricted normal holonomy is a Lie subgroup of the orthogonal matrices. With the aid of the Ambrose-Singer Theorem, which relates the concept of curvature with restricted normal holonomy, we will prove the Normal Holonomy Theorem which is the extrinsic analogue of the algebraic de Rham-Berger s Theorem. / Neste trabalho, vamos introduzir os conceitos de holonomia normal e holonomia normal restrita de uma subvariedade riemanniana, os quais são subgrupos das matrizes ortogonais que se realizam a partir de fazer translação paralela dos vetores normais, ao longo de lazos e lazos simplemente conexos respectivamente, usando a conexão normal. Vamos ver que a holonomia normal restrita é um subgrupo de Lie das matrizes ortogonais. Com o auxílio do Teorema de Ambrose-Singer, que relaciona o conceito de curvatura com holonomia normal restrita, vamos provar o Teorema Normal de Holonomia, análogo extrínseco do teorema de Rham-Berger algébrico.
2

Conexões e transporte paralelo: uma abordagem computacional

Roberto Ferreira Júnior, Nivan 31 January 2010 (has links)
Made available in DSpace on 2014-06-12T18:33:59Z (GMT). No. of bitstreams: 2 arquivo971_1.pdf: 558824 bytes, checksum: 22662ca8e835c524c3da0b796e348e0a (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2010 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta dissertação estudamos os conceitos de Conexão, Transporte Paralelo e Grupo de Holonomia. As conexões são definidas de forma algébrica. Um exemplo importante é a conexão de Levi-Civita. Demonstramos que o módulo das seções de um fibrado vetorial, admite uma conexão. A Conexão, determina o Transporte Paralelo ao longo de um caminho c. Se c é um caminho fechado, obtemos o grupo de Holonomia. Neste trabalho, há uma preocupação com os aspectos computacionais, assim, comentários sobre a implementa ção do cálculo dos conceitos apresentados em softwares de computação algébrica estão presentes em todo o texto
3

Integrabilidade de G-Estruturas / Integrability of G-structures

Duarte, Gustavo Ignácio 28 May 2018 (has links)
Esta dissertação tem como objetivo discutir sob quais condições uma G- estrutura é integrável. Primeiro apresentam-se fibrados principais, vetoriais e outras estruturas a elas associados como torção, espaços verticais, espaços horizontais e conexões. Depois apresentam-se a definição de G-estrutura, de integrabilidade de G-estruturas, com exemplos e as respectivas versões de integrabilidade e equivalência de G-estruturas. Finalmente, são descritas condições mais gerais que garantem a integrabilidade de G-estruturas. / This dissertation aims to discuss what are the conditions for the inte- grability of a G-structure. We begin presenting principal bundles, vectoer bundles, associated bundles and other structures related to them like torsion, vertical spaces, horizontal spaces and connections. After this, we present the definition of G-structure, integrability os G-structures with examples ans respectives versions of integrabilities and the equivalence of G-estructures. Finally, we describe more general conditions that ensure the integrability of G-structures.
4

Integrabilidade de G-Estruturas / Integrability of G-structures

Gustavo Ignácio Duarte 28 May 2018 (has links)
Esta dissertação tem como objetivo discutir sob quais condições uma G- estrutura é integrável. Primeiro apresentam-se fibrados principais, vetoriais e outras estruturas a elas associados como torção, espaços verticais, espaços horizontais e conexões. Depois apresentam-se a definição de G-estrutura, de integrabilidade de G-estruturas, com exemplos e as respectivas versões de integrabilidade e equivalência de G-estruturas. Finalmente, são descritas condições mais gerais que garantem a integrabilidade de G-estruturas. / This dissertation aims to discuss what are the conditions for the inte- grability of a G-structure. We begin presenting principal bundles, vectoer bundles, associated bundles and other structures related to them like torsion, vertical spaces, horizontal spaces and connections. After this, we present the definition of G-structure, integrability os G-structures with examples ans respectives versions of integrabilities and the equivalence of G-estructures. Finally, we describe more general conditions that ensure the integrability of G-structures.

Page generated in 0.0856 seconds