Return to search

Mathematical Modelling of Fund Fees / Matematisk Modellering av Fondavgifter

The paper examines the impact of fees on the return of a fund investment using different simulation and fee structure models. The results show that fees have a significant expected impact, particularly for well-performing funds. Two simulation models were used, the Geometric Brownian Motion (GBM) model and Merton Jump Diffusion (MJD) model. Two fee structures were also analysed for each simulation, a High-water mark fee structure and a Hurdle fee structure. Comparing the GBM and MJD models, the two tend to generate very similar fee statistics even though the MJD model's day-to-day returns fit better with empirical data. When comparing the HWM and Hurdle fee models, larger differences are observed. While overall average fee statistics are similar, the performance fee statistics are significantly higher in the Hurdle fee structure for assets achieving higher returns, e.g. at least an 8% annual return. However, the HWM fee structure tends to generate higher performance fees for assets with low returns. Regression models are also developed for each combination of the simulation model and fee structure. The regression models reflect the above conclusions and can for investors serve as simple key indicators to estimate expected fund fee payments. The GBM regression results are likely more useful than the MJD regression results, as the parameters of the former are easier to calculate based on historical return data. / Uppsatsen undersöker effekten av avgifter på avkastningen av en fondinvestering med hjälp av olika simuleringar och avgiftsmodeller. Resultaten visar att avgifter förväntas ha en betydande påverkan, särskilt för fonder som genererar hög avkastning. Två simuleringar användes, Geometric Brownian Motion (GBM) och Merton Jump Diffusion (MJD). Två avgiftsstrukturer analyserades också för varje simulering, en High-water mark avgiftsstruktur och en Hurdle avgiftsstruktur. Jämförelse mellan GBM och MJD-modellerna visar att de två tenderar att generera mycket liknande avgiftsstatistik trots att MJD-modellens dagliga avkastning passar bättre med empiriska data. Vid jämförelse av HWM- och Hurdle avgiftsmodellerna observeras större skillnader. Medan den övergripande genomsnittliga avgiftsstatistiken är liknande för avgiftsmodellerna, är resultatbaserade avgifterna betydligt högre i Hurdle avgiftsstrukturen för tillgångar som uppnår högre avkastning, t.ex. minst 8% årlig avkastning. Däremot tenderar HWM-avgiftsstrukturen att generera högre resultatbaserade avgifter för tillgångar med låg avkastning. Regressionsmodeller utvecklades också för varje kombination av simulering och avgiftsstruktur. Regressionmodellerna återspeglar ovanstående slutsatser och kan för investerare fungera som enkla nyckeltal för att uppskatta förväntad kostnad av fondavgifter. GBM-regressionsresultaten är sannolikt mer användbara än MJD-regressionsresultaten, eftersom parametrarna för den förra är lättare att beräkna baserat på historisk avkastningsdata.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-345002
Date January 2023
CreatorsWollmann, Oscar
PublisherKTH, Matematik (Avd.)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2023:73

Page generated in 0.0028 seconds