The city of Uppsala is suffering from power shortage, which is creating issues for Region Uppsala, which manages the new city bus depot. Gamla Uppsala Buss (GUB), the operator of the city busses, has bought 12 electrical busses and is planning to increase that number up to 60, which is a political goal. Charging of the electrical busses occurs mostly in the nights, but also during lunch time. In this thesis, scenarios of how different number of buses (12, 36 and 60) relates to the power subscription limit at the depot is studied. The study was made through interviews with industry experts and by creating different scenarios in an Excel-model which was produced in this work. One main conclusion from the interview study was that the regulation control of all the technical components of the system, and foremost the regulation control of the charging of the busses, is a vital component to handle the charging properly. Optimal regulation control requires accurate planning and advanced calculations which relies upon access of data, i.e., charging cycles, battery range and electric energy consumption. The simulations in the Excel-model showed that the bus depot could handle 12 electrical buses with the available power subscription that is today. For 36 or 60 electrical busses additional power had to be added behind-the-meter, which could be obtained with energy storage (batteries), a biogas engine linked to a generator or a combination of those two. The simulations showed that either an energy storage or a biogas engine could compensate for the lack of power, with reasonable proportions. The two technical solutions could also be combined in infinite ways, depending on the goal of Region Uppsala, to fulfill the task. The technical solution that is most feasible for Region Uppsala depends on their priorities. The economics of the solution will of course be a big factor, which has not been included in this work. Another feasible priority could be to choose a technical solution that creates utility for the power system of Uppsala, i.e., mitigating power shortage, with a solution that has a high selfproduction of electric energy and a power consumption profile of the bus depot that is inverted to the rest of the city’s.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-481725 |
Date | January 2022 |
Creators | Björk, Ebba |
Publisher | Uppsala universitet, Institutionen för fysik och astronomi |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC ES, 1650-8300 ; 22013 |
Page generated in 0.0027 seconds