• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tekniska lösningar för att hantera laddning av elbussar vid effektbrist : En analys av Uppsalas stadsbussdepå i olika framtidsscenarion / Technical solutions to handle charging of electrical busses during power shortage : An analysis of Uppsala’s city bus depot in different future scenarios

Björk, Ebba January 2022 (has links)
The city of Uppsala is suffering from power shortage, which is creating issues for Region Uppsala, which manages the new city bus depot. Gamla Uppsala Buss (GUB), the operator of the city busses, has bought 12 electrical busses and is planning to increase that number up to 60, which is a political goal. Charging of the electrical busses occurs mostly in the nights, but also during lunch time. In this thesis, scenarios of how different number of buses (12, 36 and 60) relates to the power subscription limit at the depot is studied. The study was made through interviews with industry experts and by creating different scenarios in an Excel-model which was produced in this work. One main conclusion from the interview study was that the regulation control of all the technical components of the system, and foremost the regulation control of the charging of the busses, is a vital component to handle the charging properly. Optimal regulation control requires accurate planning and advanced calculations which relies upon access of data, i.e., charging cycles, battery range and electric energy consumption. The simulations in the Excel-model showed that the bus depot could handle 12 electrical buses with the available power subscription that is today. For 36 or 60 electrical busses additional power had to be added behind-the-meter, which could be obtained with energy storage (batteries), a biogas engine linked to a generator or a combination of those two. The simulations showed that either an energy storage or a biogas engine could compensate for the lack of power, with reasonable proportions. The two technical solutions could also be combined in infinite ways, depending on the goal of Region Uppsala, to fulfill the task. The technical solution that is most feasible for Region Uppsala depends on their priorities. The economics of the solution will of course be a big factor, which has not been included in this work. Another feasible priority could be to choose a technical solution that creates utility for the power system of Uppsala, i.e., mitigating power shortage, with a solution that has a high selfproduction of electric energy and a power consumption profile of the bus depot that is inverted to the rest of the city’s.
2

Assessing the potential of fuel saving and emissions reduction of the bus rapid transit system in Curitiba, Brazil

Dreier, Dennis January 2015 (has links)
The transport sector contributes significantly to global energy use and emissions due to its traditional dependency on fossil fuels. Climate change, security of energy supply and increasing mobility demand is mobilising governments around the challenges of sustainable transport. Immediate opportunities to reduce emissions exist through the adoption of new bus technologies, e.g. advanced powertrains. This thesis analysed energy use and carbon dioxide (CO2) emissions of conventional, hybrid-electric, and plug-in hybrid-electric city buses including two-axle, articulated, and biarticulated chassis types (A total of 6 bus types) for the operation phase (Tank-to-Wheel) in Curitiba, Brazil. The systems analysis tool – Advanced Vehicle Simulator (ADVISOR) and a carbon balance method were applied. Seven bus routes and six operation times for each (i.e. 42 driving cycles) are considered based on real-world data. The results show that hybrid-electric and plug-in hybrid-electric two-axle city buses consume 30% and 58% less energy per distance (MJ/km) compared to a conventional two-axle city bus (i.e. 17.46 MJ/km). Additionally, the energy use per passenger-distance (MJ/pkm) of a conventional biarticulated city bus amounts to 0.22 MJ/pkm, which is 41% and 24% lower compared to conventional and hybrid-electric two-axle city buses, respectively. This is mainly due to the former’s large passenger carrying capacity. Large passenger carrying capacities can reduce energy use (MJ/pkm) if the occupancy rate of the city bus is sufficient high. Bus routes with fewer stops decrease energy use by 10-26% depending on the city bus, because of reductions in losses from acceleration and braking. The CO2 emissions are linearly proportional to the estimated energy use following from the carbon balance method, e.g. CO2 emissions for a conventional two-axle city bus amount to 1299 g/km. Further results show that energy use of city bus operation depends on the operation time due to different traffic conditions and driving cycle characteristics. An additional analysis shows that energy use estimations can vary strongly between considered driving cycles from real-world data. The study concludes that advanced powertrains with electric drive capabilities, large passenger carrying capacities and bus routes with a fewer number of bus stops are beneficial in terms of reducing energy use and CO2 emissions of city bus operation in Curitiba.

Page generated in 0.0408 seconds