• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of the driving cycle on exhaust emissions of buses in Hanoi

Nguyen, Thi Yen Lien, Nghiem, Trung Dung, Cao, Minh Quý 07 January 2019 (has links)
The impact of driving cycle on exhaust emissions of buses in Hanoi was presented in this article. A typical driving cycle of buses in Hanoi was developed based on the real-world driving data, and it also was assessed that has a good conformity with the real-world driving data. The typical driving cycle and European Transient Cycle part 1 (ETC-part1) were used to estimate vehicle emission according to different driving cycles. The obtained results showed that emissions level of CO, VOC, PM, CO2 and NOx of the buses were very different between two driving cycles, especially CO2 and NOx. This paper, therefore, reconfirms the necessity of the development of the typical driving cycle before conducting the emission inventory for mobile sources. / Tóm tắt: Tác động của chu trình lái tới sự phát thải của xe buýt tại Hà Nội đã được trình bày trong bài báo này. Một chu trình lái đặc trưng của xe buýt Hà Nội đã được xây dựng dựa trên dữ liệu hoạt động ngoài thực tế của phương tiện, và chu trình lái này cũng đã được đánh giá có sự phù hợp rất cao với dữ liệu lái ngoài thực tế. Chu trình lái đặc trưng và chu trình thử ETC-part1 được sử dụng để đánh giá phát thải của phương tiện theo các chu trình lái khác nhau. Các kết quả đạt được cho thấy mức độ phát thải CO, VOC, PM, CO2 và NOx của xe buýt rất khác nhau giữa hai chu trình lái, đặc biệt là CO2 và NOx. Do đó, bài báo khẳng định sự cần thiết phải xây dựng chu trình lái đặc trưng trước khi thực hiện kiểm kê phát thải đối với nguồn động.
2

Ökobilanz konventioneller und elektrischer Fahrzeuge

Hofeditz, Paul 27 July 2022 (has links)
Elektroautos gelten als Hoffnungsträger, um die verkehrsbezogenen Treibhausgasemissionen in Deutschland drastisch zu reduzieren. Aus bisheriger Forschung geht hervor, dass Elektroautos über den Lebenszyklus im Durchschnitt eine geringere Menge an Treibhausgasen verursachen als konventionelle Pkw mit Verbrennungsmotoren. Jedoch betrachtet bisherige Forschung nicht, welchen Einfluss verschiedene Fahrzyklen der Pkw auf die Ökobilanz haben, was zur Folge hat, dass technologische Unterschiede, die nur auf einem Teil des Straßennetzes Anwendung finden, nicht berücksichtigt werden. Die vorliegende Arbeit untersucht den Einfluss verschiedener Fahrzyklen auf die Höhe der Treibhausgasemissionen von Elektroautos und Pkw mit Benzin- bzw. Dieselmotor. Grundlage der Emissionsbestimmung sind je ein Autobahn-Fahrzyklus und ein Stadt-Fahrzyklus, anhand derer der Strom- bzw. Kraftstoffverbrauch modelliert wird. Die Modellierung erfolgt anhand eines mikroskopischen Verbrauchsmodells, welches physikalische Kräfte, Fahrzeugparameter sowie wesentliche technologische Unterschiede berücksichtigt. Neben den Emissionen der Nutzungsphase werden die Emissionen der Produktions- und der Recyclingphase bestimmt, um den Lebenszyklus eines Pkw zu komplettieren. Die Ergebnisse bisheriger Forschung werden bestätigt, da das Elektroauto für beide Fahrzyklen geringere Emissionen aufweist. In der Stadt fällt der Unterschied deutlich höher aus, hier verursacht das Elektroauto 45,7 % weniger Treibhausgasemissionen als der Benziner bzw. 34,1 % weniger als der Diesel. Im Vergleich dazu lassen sich auf der Autobahn Treibhausgasemissionseinsparungen von 27,9 % bzw. 17,9 % realisieren, wobei die Treibhausgasemissionen in der Stadt für Elektroautos und für Autos mit Benzin- bzw. Dieselmotor höher sind als auf der Autobahn. Eine abschließende Sensitivitätsanalyse zeigt, dass ein weniger emissionsintensiver Strommix sowie die Reduktion des Leergewichts Hebel zur weiteren Reduktion der Emissionen des Elektroautos sind. Daraus erschließt sich, dass Elektroautos im Vergleich zu Pkw mit Benzin- bzw. Dieselmotor ökobilanziell zurecht als Hoffnungsträger gelten, doch ihr Einsparpotenzial durch den Ausbau erneuerbarer Energien sowie durch die Verwendung kleinerer und leichterer Pkw in der Stadt erhöht werden kann.:Abbildungsverzeichnis . . . . . . . . . . . . . . . . .VII Tabellenverzeichnis. . . . . . . . . . . . . . . . . IX Abkürzungsverzeichnis. . . . . . . . . . . . . . . . . XI Symbolverzeichnis. . . . . . . . . . . . . . . . . XIII 1 Einleitung. . . . . . . . . . . . . . . . .1 2 Aktueller Forschungsstand . . . . . . . . . . . . . . . . .3 3 Vorstellung des Konzepts der LCA . . . . . . . . . . . . . . . . .7 4 Methodik: Festlegung des Ziels und des Untersuchungsrahmens. . . . . . . . . . . . . .9 4.1 Batterieelektrische Pkw (BEV) . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2 Pkw mit Verbrennungsmotor (ICEV) . . . . . . . . . . . . . . . . . . . . . . 11 4.3 Fahrzyklen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.4 Modellierung der Produktionsphase . . . . . . . . . . . . . . . . . . . . . . . 13 4.5 Modellierung der Nutzungsphase . . . . . . . . . . . . . . . . . . . . . . . . 17 4.6 Modellierung der Recyclingphase . . . . . . . . . . . . . . . . . . . . . . . . 24 4.7 Modellierung der Aggregation der einzelnen Phasen . . . . . . . . . . . . . . 25 4.8 Betrachtete Emissionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.9 Funktionelle Einheit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5 Sachbilanz . . . . . . . . . . . . . . . . .27 6 Ergebnisse: Wirkungsabschätzung. . . . . . . . . . . . . . . . . 31 6.1 Treibhausgasemissionen der Produktionsphase . . . . . . . . . . . . . . . . . 31 6.2 Treibhausgasemissionen der Nutzungsphase . . . . . . . . . . . . . . . . . . 33 6.3 Treibhausgasemissionen der Recyclingphase . . . . . . . . . . . . . . . . . . 35 6.4 Aggregierte Treibhausgasemissionen . . . . . . . . . . . . . . . . . . . . . . 36 7 Sensitivitätsanalyse . . . . . . . . . . . . . . . . .39 7.1 Definition und Arten von Sensitivitätsanalysen . . . . . . . . . . . . . . . . 39 7.2 Methodik der lokalen Sensitivitätsanalyse . . . . . . . . . . . . . . . . . . . 39 7.3 Variation des Leergewichts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.4 Variation des Luftwiderstandsbeiwertes . . . . . . . . . . . . . . . . . . . . 41 7.5 Variation der Lebensfahrleistung . . . . . . . . . . . . . . . . . . . . . . . . 42 7.6 Variation des Strommixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.7 Variation des Rekuperationsgrads . . . . . . . . . . . . . . . . . . . . . . . . 46 7.8 Variation der Betriebs- und Verlustleistung . . . . . . . . . . . . . . . . . . 47 7.9 Aggregation der Ergebnisse der Sensitivitätsanalyse . . . . . . . . . . . . . . 48 8 Diskussion . . . . . . . . . . . . . . . . .51 9 Zusammenfassung und Implikationen . . . . . . . . . . . . . . . . . 53 Literaturverzeichnis. . . . . . . . . . . . . . . . . XV Anhang . . . . . . . . . . . . . . . . . XXII A.1 Input für die Produktionsphase . . . . . . . . . . . . . . . . . . . . . . . . . XXIII A.2 Input für die Nutzungsphase . . . . . . . . . . . . . . . . . . . . . . . . . . XXVI A.3 Ergebnisse der Wirkungsabschätzung . . . . . . . . . . . . . . . . . . . . . . XXVIII A.4 Ergebnisse der Sensitivitätsanalyse . . . . . . . . . . . . . . . . . . . . . . . XXVIII / Electric cars are seen as a beacon of hope regarding the drastic reduction of greenhouse gas emissions in the transport sector in Germany. Previous research shows that electric vehicles are emitting a smaller amount of greenhouse gases than cars with a petrol or a diesel engine. However, previous research does not consider the influence of different use cases of passenger cars, which means that technological differences which only apply to parts of the road network are not accounted for. The goal of this thesis is to extend previous research by investigating the influence of different drive cycles on the amount of greenhouse gas emissions emitted by electric cars and cars with a petrol or a diesel engine. Specifically, a highway drive cycle and an urban drive cycle are used to model the consumption of electricity, petrol or diesel. In other words, it is a microscopic model utilizing physical forces, car parameters, and significant technological differences. Besides the emissions during driving the emissions caused by production and recycling are taken into account to complete the life cycle of cars. The results of previous research can be confirmed by this thesis as the amount of greenhouse gas emissions caused by electric cars is smaller than that caused by cars with petrol or diesel engines for both drive cycles. In the urban area, the difference among the investigated technologies is significantly greater over the entire lifecycle; the electric car emits 45.7 % less than a car with a petrol engine and 34.1 % less than a car with a diesel engine. In comparison, on the highway the electric car emits just 27.9 % less than a car with a petrol engine and 17.9 % less than a car with a diesel engine. A final sensitivity analysis shows that a less emission-intensive electricity mix and a reduced vehicle weight are key levers for further reducing greenhouse gas emissions of electric cars. In summary, the results of this thesis lead to the conclusion that electric cars are rightfully seen as a beacon of hope for drastically reducing greenhouse gas emissions; nevertheless, their impact could be further enhanced by expanding renewable energies and by focussing on lighter electric vehicles in urban areas.:Abbildungsverzeichnis . . . . . . . . . . . . . . . . .VII Tabellenverzeichnis. . . . . . . . . . . . . . . . . IX Abkürzungsverzeichnis. . . . . . . . . . . . . . . . . XI Symbolverzeichnis. . . . . . . . . . . . . . . . . XIII 1 Einleitung. . . . . . . . . . . . . . . . .1 2 Aktueller Forschungsstand . . . . . . . . . . . . . . . . .3 3 Vorstellung des Konzepts der LCA . . . . . . . . . . . . . . . . .7 4 Methodik: Festlegung des Ziels und des Untersuchungsrahmens. . . . . . . . . . . . . .9 4.1 Batterieelektrische Pkw (BEV) . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2 Pkw mit Verbrennungsmotor (ICEV) . . . . . . . . . . . . . . . . . . . . . . 11 4.3 Fahrzyklen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.4 Modellierung der Produktionsphase . . . . . . . . . . . . . . . . . . . . . . . 13 4.5 Modellierung der Nutzungsphase . . . . . . . . . . . . . . . . . . . . . . . . 17 4.6 Modellierung der Recyclingphase . . . . . . . . . . . . . . . . . . . . . . . . 24 4.7 Modellierung der Aggregation der einzelnen Phasen . . . . . . . . . . . . . . 25 4.8 Betrachtete Emissionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.9 Funktionelle Einheit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5 Sachbilanz . . . . . . . . . . . . . . . . .27 6 Ergebnisse: Wirkungsabschätzung. . . . . . . . . . . . . . . . . 31 6.1 Treibhausgasemissionen der Produktionsphase . . . . . . . . . . . . . . . . . 31 6.2 Treibhausgasemissionen der Nutzungsphase . . . . . . . . . . . . . . . . . . 33 6.3 Treibhausgasemissionen der Recyclingphase . . . . . . . . . . . . . . . . . . 35 6.4 Aggregierte Treibhausgasemissionen . . . . . . . . . . . . . . . . . . . . . . 36 7 Sensitivitätsanalyse . . . . . . . . . . . . . . . . .39 7.1 Definition und Arten von Sensitivitätsanalysen . . . . . . . . . . . . . . . . 39 7.2 Methodik der lokalen Sensitivitätsanalyse . . . . . . . . . . . . . . . . . . . 39 7.3 Variation des Leergewichts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.4 Variation des Luftwiderstandsbeiwertes . . . . . . . . . . . . . . . . . . . . 41 7.5 Variation der Lebensfahrleistung . . . . . . . . . . . . . . . . . . . . . . . . 42 7.6 Variation des Strommixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.7 Variation des Rekuperationsgrads . . . . . . . . . . . . . . . . . . . . . . . . 46 7.8 Variation der Betriebs- und Verlustleistung . . . . . . . . . . . . . . . . . . 47 7.9 Aggregation der Ergebnisse der Sensitivitätsanalyse . . . . . . . . . . . . . . 48 8 Diskussion . . . . . . . . . . . . . . . . .51 9 Zusammenfassung und Implikationen . . . . . . . . . . . . . . . . . 53 Literaturverzeichnis. . . . . . . . . . . . . . . . . XV Anhang . . . . . . . . . . . . . . . . . XXII A.1 Input für die Produktionsphase . . . . . . . . . . . . . . . . . . . . . . . . . XXIII A.2 Input für die Nutzungsphase . . . . . . . . . . . . . . . . . . . . . . . . . . XXVI A.3 Ergebnisse der Wirkungsabschätzung . . . . . . . . . . . . . . . . . . . . . . XXVIII A.4 Ergebnisse der Sensitivitätsanalyse . . . . . . . . . . . . . . . . . . . . . . . XXVIII
3

Assessing the potential of fuel saving and emissions reduction of the bus rapid transit system in Curitiba, Brazil

Dreier, Dennis January 2015 (has links)
The transport sector contributes significantly to global energy use and emissions due to its traditional dependency on fossil fuels. Climate change, security of energy supply and increasing mobility demand is mobilising governments around the challenges of sustainable transport. Immediate opportunities to reduce emissions exist through the adoption of new bus technologies, e.g. advanced powertrains. This thesis analysed energy use and carbon dioxide (CO2) emissions of conventional, hybrid-electric, and plug-in hybrid-electric city buses including two-axle, articulated, and biarticulated chassis types (A total of 6 bus types) for the operation phase (Tank-to-Wheel) in Curitiba, Brazil. The systems analysis tool – Advanced Vehicle Simulator (ADVISOR) and a carbon balance method were applied. Seven bus routes and six operation times for each (i.e. 42 driving cycles) are considered based on real-world data. The results show that hybrid-electric and plug-in hybrid-electric two-axle city buses consume 30% and 58% less energy per distance (MJ/km) compared to a conventional two-axle city bus (i.e. 17.46 MJ/km). Additionally, the energy use per passenger-distance (MJ/pkm) of a conventional biarticulated city bus amounts to 0.22 MJ/pkm, which is 41% and 24% lower compared to conventional and hybrid-electric two-axle city buses, respectively. This is mainly due to the former’s large passenger carrying capacity. Large passenger carrying capacities can reduce energy use (MJ/pkm) if the occupancy rate of the city bus is sufficient high. Bus routes with fewer stops decrease energy use by 10-26% depending on the city bus, because of reductions in losses from acceleration and braking. The CO2 emissions are linearly proportional to the estimated energy use following from the carbon balance method, e.g. CO2 emissions for a conventional two-axle city bus amount to 1299 g/km. Further results show that energy use of city bus operation depends on the operation time due to different traffic conditions and driving cycle characteristics. An additional analysis shows that energy use estimations can vary strongly between considered driving cycles from real-world data. The study concludes that advanced powertrains with electric drive capabilities, large passenger carrying capacities and bus routes with a fewer number of bus stops are beneficial in terms of reducing energy use and CO2 emissions of city bus operation in Curitiba.

Page generated in 0.0236 seconds