With the advancements in the field of wireless sensor networks (WSNs), more and more applications require the sensor nodes to have long lifetime. Energy harvesting sources, e.g. thermoelectric generators (TEGs), can be used to increase the lifetime and capability of the WSNs. Integration of energy harvesters into sensor nodes of WSNs can realize self powered systems, providing the possibility for maintenance free WSNs. TEGs can convert the existing temperature differences into electricity. The efficiency of TEGs is directly related to the dimensionless figure of merit (ZT) of materials, which is given as ZT=σS^2 T/k, where σ is the electrical conductivity, S is the Seebeck coefficient, k is the thermal conductivity, T is the temperature and σS^2 is the power factor. Traditional thermoelectric (TE) materials are based on inorganic materials, of which the thermal conductivity is high. Over the past decade, the use of nanostructuring technology, e.g. superlattice, could decrease the thermal conductivity in order to enhance the efficiency of TE materials. However, the high cost and the rigidity of inorganic TE materials are limiting factors. As alternatives, polymer based materials have become the research focus due to their intrinsic low thermal conductivity, high flexibility and high electrical conductivity. Moreover, polymer based materials could be fabricated in solution form, giving the possibility for employing printing techniques hence a decrease in the production cost.
Unlike the typical approach, in which secondary dopants are added into PEDOT:PSS solutions to modify the power factor of polymer films, this thesis is focused on a more efficient method to improve TE properties. This thesis demonstrates for the first time that post treatment of PEDOT:PSS films with the secondary dopant DMSO as the medium results in a much larger power factor than the traditional addition method. The post treatment method also avoids the usually required mixing step involved in the addition method. Different solvents were selected to discuss the impact factors in the modification of the power factor by this post treatment approach. The post treatment of PEDOT:PSS films was then extended to utilize a green solvent EMIMBF_4 (an ionic liquid) as the medium. EMIMBF_4 is found to exchange ions with PEDOT:PSS films. As a result, the EMIM^+ cations remain in the films and reduce the oxidation level of PEDOT chains, which affects the Seebeck coefficient and the electrical conductivity.
Furthermore, TE materials based on hybrid composites with polymer as the matrix and Te nanostructures as the nanoinclusions were investigated. This thesis successfully developed a green synthesis method to obtain Te nanostructures, in which a non toxic reductant and a non toxic Te sources were used. Well controlled Te nanostructures including nanorods, nanowires and nanotubes were synthesized by wet chemical and hydrothermal synthesis. Those as synthesized Te nanowires were then integrated into PEDOT:PSS solution for composite films fabrication. A high Seebeck coefficient up to 200 μV/K was observed in the composite film. / Mit den Weiterentwicklungen der Drahtlosen Sensornetzwerke (engl. WSN, wireless sensor networks) stellen immer mehr Anwendungen die Forderung einer langen Lebensdauer der Sensorknoten. Energiegewinnungssysteme (engl. Energy Harvesters) wie z.B. thermoelektrische Generatoren (TEGs) können genutzt werden, um die Lebensdauer und Leistungsfähigkeit der WSN zu steigern. Mit der Integration von Energy Harvesters können WSN ohne äußere Stromversorgung realisiert und somit die Möglichkeit zur Wartungsfreiheit geschaffen werden. TEGs liefern Energie durch die Umwandlung einer Temperaturdifferenz in Elektrizität. Die Effektivität der TEG ist direkt verbunden mit der Material-Kennzahl ZT und ist gegeben durch ZT=σS^2 T/k, wobei σ die elektrische Leitfähigkeit ist, S der Seebeck Koeffizient, k die thermische Leifähigkeit, T die Temperatur und σS^2 der Leistungsfaktor. Herkömmliche thermoelektrische (TE) Materialien basieren auf anorganischen Materialien, von denen die thermische Leitfähigkeit hoch ist. Im Laufe des letzten Jahrzehnts konnte durch den Einsatz der Nanostrukturierung die thermische Leitfähigkeit verringern werden um damit die Effizienz von TE-Materialien zu steigern. Die Steifigkeit dieser Materialien ist ein anderer Aspekt. Als Alternative für anorganische TE Materialien sind Polymer basierte TE Materialien zum Fokus der Forschung geworden aufgrund einer intrinsisch niedrigen thermischen Leitfähigkeit, hohen Flexibilität und hohen elektrischen Leitfähigkeit. Des Weiteren können diese Polymere in gelöster Form verarbeitet werden, was die Möglichkeit für den Einsatz von Drucktechnologien und damit geringeren Produktionskosten gibt.
Anders als der herkömmliche Ansatz den Leistungsfaktor der Polymerfilme durch die Ergänzung von sekundären Dotanten in PEDOT:PSS Lösungen zu verändern, wurde in dieser Arbeit eine effizientere Methode zur Verbesserung der TE Eigenschaften gesucht. In dieser Arbeit wird zum ersten Mal gezeigt, dass die Nachbehandlung von PEDOT:PSS Schichten mit sekundären Dotanten Dimethylsulfoxid (DMSO) als Medium der Nachbehandlung zu einem viel höheren Leistungsfaktor führt als bei der Zugabemethode und außerdem die sonst erforderliche Mischprocedur vermeidet. Es wurden verschiedene Lösungsmittel ausgewählt um die Einflussfaktoren bei der Modifikation des Leistungsfaktors durch die Nachbehandlung von Polymerschichten zu diskutieren. Die Nachbehandlung von PEDOT:PSS Schichten wurde nachfolgend erweitert um das umweltfreundliche Lösungsmittel EMIMBF4 (eine ionische Flüssigkeit) als das Medium einzusetzen. EMIMBF4 ist bekannt für den Austausch von Ionen mit PEDOT:PSS Schichten, so dass EMIM Kationen in der Schicht verbleiben, die Oxidationsstufe der PEDOT-Ketten senken und damit den Seebeck-Koeffizient und die elektrische Leitfähigkeit beeinflussen.
Des Weiteren konzentriert sich diese Arbeit auf TE Materialien basierend auf Kompositen aus Polymeren mit Nanoeinlagerungen. Erfolgreiche Syntheseansätze wurden für Tellur-Nanostrukturen entwickelt, bei denen keine giftigen Reduktionsmittel und keine giftigen Tellur-Quellen zur Verwendung kamen. Es erfolgte die Erzeugung von kontrollierten Tellur-Nanostrukturen, einschließlich Nanostäben, Nanodrähten und Nanoröhren, mit nass-chemischer und hydrothermaler Synthese. Die so hergestellten Nanodrähte wurden dann in PEDOT:PSS Lösungen integriert für die Herstellung von Komposite-Schichten. Dabei konnte ein hoher Seebeck-Koeffizienten, bis zu 200 μV/K, festgestellt werden.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:20260 |
Date | 19 May 2015 |
Creators | Luo, Jinji |
Contributors | Geßner, Thomas, Deibel, Carsten, Dani, Ines, Technische Universität Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds