Personalisierung ist ein wichtiger Bereich des Internet Marketings, zu dem es wenige experimentelle Untersuchungen mit großen Teilnehmerzahlen gibt. Für den erfolgreichen Einsatz von Empfehlungsverfahren sind umfangreiche Daten über das Käuferverhalten erforderlich.
Diesen Problemstellungen nimmt sich die vorliegende Arbeit an. In ihr wird das Shop-übergreifende individuelle Käuferverhalten von bis zu 126.000 Newsletter-Empfängern eines deutschen Online-Bonussystems sowohl mittels ausgewählter Data-Mining-Methoden als auch experimentell untersucht.
Dafür werden Prototypen eines Data-Mining-Systems, einer A/B-Test-Software-Komponente und einer Empfehlungssystem-Komponente entwickelt und im Rahmen des Data Minings und durch Online-Feldexperimente evaluiert.
Dabei kann für die genannte Nutzergruppe in einem Experiment bereits mit einem einfachen Empfehlungsverfahren gezeigt werden, dass zum einen die Shop-übergreifenden individuellen Verhaltensdaten des Online-Bonus-Systems für die Erzeugung von Empfehlungen geeignet sind, und zum anderen, dass die dadurch erzeugten Empfehlungen zu signifikant mehr Bestellungen als bei der besten Empfehlung auf Basis durchschnittlichen Käuferverhaltens führten.
In weiteren Experimenten im Rahmen der Evaluierung der A/B-Test-Komponente konnte gezeigt werden, dass absolute Rabattangebote nur dann zu signifikant mehr Bestellungen führten als relative Rabatt-Angebote, wenn sie mit einer Handlungsaufforderung verbunden waren.
Die Arbeit ordnet sich damit in die Forschung zur Beeinflussung des Käuferverhaltens durch Personalisierung und durch unterschiedliche Rabatt-Darstellungen ein und trägt die genannten Ergebnisse und Artefakte bei.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:15-qucosa-203512 |
Date | 26 May 2016 |
Creators | Fassauer, Roland |
Contributors | Universität Leipzig, Wirtschaftswissenschaftliche Fakultät, Prof. Dr. Bogdan Franzcyk, Prof. Dr. Stefan Kirn |
Publisher | Universitätsbibliothek Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | deu |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0026 seconds