Le but de cette thèse est d'étudier des questions issues de la théorie de l'élasticité en utilisant des méthodes d'analyse mathématique et de géométrie différentielle. Dans le cas mono-dimensionnel, qui est lié à l'étude des fils élastiques, nous prouvons des résultats d'existence, d'unicité et de stabilité d'une courbe dans des espaces de Sobolev. Nous traitons ensuite le cas général d'une immersion de dimension et de co-dimension quelconques d'une sous-variété dans l'espace euclidien. Nous montrons ainsi que le résultat classique d'existence et d'unicité d'une telle immersion peut être étendu jusqu'au bord de la sous-variété, sous une hypothèse de régularité peu restrictive sur celui-ci. En outre, nous montrons que l'application ainsi construite est localement lipschitzienne pour les topologies appropriées. Enfin, nous revenons à l'étude des fils élastiques, pour obtenir des inégalités de Korn linéaires et non linéaires pour les courbes en dimension 3.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00009754 |
Date | 09 May 2005 |
Creators | SZOPOS, Marcela |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds