Return to search

Graph labelings and decompositions by partitioning sets of integers

Aquest treball és una contribució a l'estudi de diferents problemes que sorgeixen de dues àrees fortament connexes de la Teoria de Grafs: etiquetaments i descomposicions. Molts etiquetaments de grafs deuen el seu origen als presentats l'any 1967 per Rosa. Un d'aquests etiquetaments, àmpliament conegut com a etiquetament graceful, va ser definit originalment com a eina per atacar la conjectura de Ringel, la qual diu que el graf complet d'ordre 2m+1 pot ser descompost en m copies d'un arbre donat de mida m. Aquí, estudiem etiquetaments relacionats que ens donen certes aproximacions a la conjectura de Ringel, així com també a una altra conjectura de Graham i Häggkvist que, en una forma dèbil, demana la descomposició d'un graf bipartit complet per un arbre donat de mida apropiada. Les principals contribucions que hem fet en aquest tema són la prova de la darrera conjectura per grafs bipartits complets del doble de mida essent descompostos per arbres de gran creixement i un nombre primer d'arestes, i la prova del fet que cada arbre és un subarbre gran de dos arbres pels quals les dues conjectures es compleixen respectivament. Aquests resultats estan principalment basats en una aplicació del mètode polinomial d'Alon. Un altre tipus d'etiquetaments, els etiquetaments magic, també són tractats aquí. Motivats per la noció de quadrats màgics de Teoria de Nombres, en aquest tipus d'etiquetaments volem asignar nombres enters a parts del graf (vèrtexs, arestes, o vèrtexs i arestes) de manera que la suma de les etiquetes assignades a certes subestructures del graf sigui constant. Desenvolupem tècniques basades en particions de certs conjunts d'enters amb algunes condicions additives per construir etiquetaments cycle-magic, un nou tipus d'etiquetament introduït en aquest treball i que estén la noció clàssica d'etiquetament magic. Els etiquetaments magic no donen cap descomposició de grafs, però les tècniques usades per obtenir-los estan al nucli d'un altre problema de descomposició, l'ascending subgraph decomposition (ASD). Alavi, Boals, Chartrand, Erdös i Oellerman, van conjecturar l'any 1987 que tot graf té un ASD. Aquí, estudiem l'ASD per grafs bipartits, una classe de grafs per la qual la conjectura encara no ha estat provada. Donem una condició necessària i una de suficient sobre la seqüència de graus d'un estable del graf bipartit de manera que admeti un ASD en que cada factor sigui un star forest. Les tècniques utilitzades estan basades en l'existència de branca-acoloriments en multigrafs bipartits. També tractem amb el sumset partition problem, motivat per la conjectura ASD, que demana una partició de [n] de manera que la suma dels elements de cada part sigui igual a un valor prescrit. Aquí donem la millor condició possible per la versió modular del problema que ens permet provar els millors resultats ja coneguts en el cas enter per n primer. La prova està de nou basada en el mètode polinomial. / This work is a contribution to the study of various problems that arise from two strongly connected areas of the Graph Theory: graph labelings and graph decompositions. Most graph labelings trace their origins to the ones presented in 1967 by Rosa. One of these labelings, widely known as the graceful labeling, originated as a means of attacking the conjecture of Ringel, which states that the complete graph of order 2m+1 can be decomposed into m copies of a given tree of size m. Here, we study related labelings that give some approaches to Ringel's conjecture, as well as to another conjecture by Graham and Häggkvist that, in a weak form, asks for the decomposition of a complete bipartite graph by a given tree of appropriate size. Our main contributions in this topic are the proof of the latter conjecture for double sized complete bipartite graphs being decomposed by trees with large growth and prime number of edges, and the proof of the fact that every tree is a large subtree of two trees for which both conjectures hold respectively. These results are mainly based on a novel application of the so-called polynomial method by Alon. Another kind of labelings, the magic labelings, are also treated. Motivated by the notion of magic squares in Number Theory, in these type of labelings we want to assign integers to the parts of a graph (vertices, edges, or vertices and edges) in such a way that the sums of the labels assigned to certain substructures of the graph remain constant. We develop techniques based on partitions of certain sets of integers with some additive conditions to construct cycle-magic labelings, a new brand introduced in this work that extends the classical magic labelings. Magic labelings do not provide any graph decomposition, but the techniques that we use to obtain them are the core of another decomposition problem, the ascending subgraph decomposition (ASD). In 1987, was conjectured by Alavi, Boals. Chartrand, Erdös and Oellerman that every graph has an ASD. Here, we study ASD of bipartite graphs, a class of graphs for which the conjecture has not been shown to hold. We give a necessary and a sufficient condition on the one sided degree sequence of a bipartite graph in order that it admits an ASD by star forests. Here the techniques are based on the existence of edge-colorings in bipartite multigraphs. Motivated by the ASD conjecture we also deal with the sumset partition problem, which asks for a partition of [n] in such a way that the sum of the elements of each part is equal to a prescribed value. We give a best possible condition for the modular version of the sumset partition problem that allows us to prove the best known results in the integer case for n a prime. The proof is again based on the polynomial method.

Identiferoai:union.ndltd.org:TDX_UPC/oai:www.tdx.cat:10803/5859
Date14 June 2010
CreatorsMoragas Vilarnau, Jordi
ContributorsLladó Sánchez, Anna, Universitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística
PublisherUniversitat Politècnica de Catalunya
Source SetsUniversitat Politècnica de Catalunya
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Formatapplication/pdf
SourceTDX (Tesis Doctorals en Xarxa)
RightsADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs., info:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds