Return to search

Méthodes physiques d’extraction de micro-organismes à partir d’échantillons sanguins à l'aide de microsystèmes / New methods for continuous microorganism separation from biological samples within a microsystem

Dans le domaine du diagnostic in vitro, l'étape d'extraction de micro-organismes à partir d'un échantillon complexe est une étape clé pour permettre l'identification du pathogène responsable d'une infection. Pour les septicémies, cette étape d'extraction est généralement précédée d'une étape de culture, ce qui conduit à une obtention des résultats au bout de plusieurs jours. Un résultat plus rapide (typiquement inférieur à 24h) permettrait d'augmenter le taux de survie des patients, et aurait ainsi une forte valeur ajoutée pour le corps médical. Le but de ces travaux est donc de développer une nouvelle méthode d'extraction et de concentration de pathogènes directement à partir d'un échantillon sanguin, sans étape de culture. Une stratégie en deux modules microfluidiques associés en série est proposée : elle repose sur la modification de la conductivité et de l'osmolarité de l'échantillon dans un premier module, puis sur la capture des micro-organismes par diélectrophorèse dans un second module. L'étude du premier module a permis de déterminer l'impact de la conductivité et de l'osmolarité du milieu sur les propriétés diélectriques des cellules. Deux voies ont ainsi été abordées, afin de diriger les cellules du sang et les micro-organismes vers un milieu de conductivité et d'osmolarité contrôlées : la dilution, et l'utilisation de forces acoustiques. L'étude du deuxième module a ensuite permis de démontrer la possibilité de capturer et concentrer des micro-organismes à partir d'un échantillon hypotonique et faiblement conducteur dans un écoulement microfluidique par diélectrophorèse. L'architecture d'un microsystème dédié a été définie grâce à un modèle numérique, puis validé expérimentalement avec des échantillons sanguins et différents micro-organismes (E. coli, S. epidermidis et C. albicans). La capture générique des micro-organismes est démontrée, et un taux de capture de 97% a été obtenu pour la séparation de \EC, avec une vitesse moyenne de l'échantillon dans le microsystème de 100 à 200 µm.s-1. Enfin, des perspectives d'amélioration sont présentées pour permettre d'effectuer cette étape de séparation sur un gros volume d'échantillon (1 à 10mL) en quelques heures, afin de répondre aux exigences imposées par l'urgence des tests de diagnostic des septicémies. / Extraction of pathogens from a biological sample is a key step for efficient diagnostic tests of infectious diseases. For bloodstream infections, current diagnostic methods are usually based on bacterial growth and take several days to provide valuable information. An accelerated result would have a high medical value to adjust therapeutic strategies. The aim of this study is to design a new approach for separation and concentration of microorganisms directly from a blood sample, to avoid time-consuming growth stages. We report a method based on two different microsystems connected in series: it combines modification of conductivity and osmolarity of the sample with generic capture of microorganisms by dielectrophoresis. First we explore the impact of conductivity and osmolarity on the dielectric properties of blood cells and microorganisms. Dilution and acoustic forces are both analyzed to transfer blood cells and microorganisms to the optimized buffer. Then we demonstrate the feasibility of achieving the dielectrophoretic separation of microorganisms from blood cells in a low conductivity and low osmolarity medium inside a fluidic device. The structure of the device is optimized with numerical simulations and experiments performed on blood samples and various microorganisms (E. coli, S. epidermidis and C. albicans).The generic capture of microorganisms is validated, and we achieved a separation of 97% efficiency with E. coli, with an optimal inlet velocity around 100-200 µm.s-1. Finally, we propose an improved microsystem to perform the sample preparation step on a larger volume (1-10mL) in a few hours, in order to fit the medical need.

Identiferoai:union.ndltd.org:theses.fr/2013DENS0042
Date07 November 2013
CreatorsBisceglia, Émilie
ContributorsCachan, Ecole normale supérieure, Le Pioufle, Bruno
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0023 seconds