Return to search

Interprétation probabiliste de l'équation de Landau.

Cette thèse porte sur une approche probabiliste de l'équation de Landau, aussi appelée équation de Fokker-Planck-Landau. Cette équation aux dérivées partielles a été obtenue comme limite asymptotique d'équations de Boltzmann lorsque les collisions rasantes deviennent prépondérantes dans un gaz. Elle décrit le comportement de la densité de particules ayant la même vitesses au même instant (on considère ici le ca s spatialement homogène). Cette équation a été jusqu'à maintenant étudiées par des méthodes d'analyse, ce travail propose une nouvelle approche. La première partie de la thèse est consacrée à l'étude de l'existence de solution de l'équation de Landau pour des gaz dit de 'potentiels modérément mous'. L'existence de mesures de probabilité solutions est obtenue par des outils du calcul stochastique. Pour des gaz plus particuliers, il y a en fait unicité de la solution et, grâce au calcul de Malliavin, on en déduit l'existence d'une densité solution de l'équation de Landau. L'approche probabiliste permet d'avoir des conditions initiales assez générales. La seconde partie de la thèse donne une interprétation probabiliste du lien entre les équations de Boltzmann et de Landau. Tout d'abord, les résultats d'existence de solutions au sens probabiliste de l'équation de Boltzmann sont étendus aux 'potentiels modérément mous'. Puis, on montre la convergence de ces solutions vers une solution de l'équation de Landau lorsque les collisions deviennent rasantes dans le gaz. Enfin, dans le cas particulier d'un gaz de Maxwell, la convergence ponctuelle des densités est obtenue en utilisant les techniques du calcul de Malliavin. L'approche probabiliste permet une meilleure compréhension du passage Boltzmann - Landau et permet de le simuler à l'aide d'un système de particules. Quelques simulations sont présentées dans cette thèse.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00002066
Date14 November 2002
CreatorsGUERIN, Hélène
PublisherUniversité de Nanterre - Paris X
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0268 seconds