Zweitveröffentlichung, ursprünglich veröffentlicht:
Jonas Holley: Stress-Constrained Topology Optimization with Application to the Design of Electrical Machines. München: Verlag Dr. Hut, 2023, 199 Seiten, Dissertation Humboldt-Universität Berlin (2023). ISBN 978-3-8439-5378-8 / Während des Designprozesses physischer Gegenstände stellt die mechanische Stabilität in nahezu jedem Anwendungsbereich eine essentielle Anforderung dar. Stabilität kann mittels geeigneter Kriterien, die auf dem mechanischen Spannungstensor basieren, mathematisch quantifiziert werden. Dies dient dem Ziel der Vermeidung von Schädigung in jedem Punkt innerhalb des Gegenstands. Die vorliegende Arbeit behandelt die Entwicklung einer Methode zur Lösung von Designoptimierungsproblemen mit punktweisen Spannungsrestriktionen.
Zunächst wird eine Regularisierung des Optimierungsproblems eingeführt, die einen zentralen Baustein für den Erfolg einer Lösungsmethode darstellt. Nach der Analyse des Problems hinsichtlich der Existenz von Lösungen wird ein Gradientenabstiegsverfahren basierend auf einer impliziten Designdarstellung und dem Konzept des topologischen Gradienten entwickelt. Da der entwickelte Ansatz eine Methode im Funktionenraum darstellt, ist die numerische Realisierung ein entscheidender Schritt in Richtung der praktischen Anwendung. Die Diskretisierung der Zustandsgleichung und der adjungierten Gleichung bildet die Basis für eine endlich-dimensionale Version des Optimierungsverfahrens.
Im letzten Teil der Arbeit werden numerische Experimente durchgeführt, um die Leistungsfähigkeit des entwickelten Algorithmus zu bewerten. Zunächst wird das Problem des minimalen Volumens unter punktweisen Spannungsrestriktionen anhand der L-Balken Geometrie untersucht. Ein Schwerpunkt wird hierbei auf die Untersuchung der Regularisierung gelegt. Danach wird das multiphysikalische Design einer elektrischen Maschine adressiert. Zusätzlich zu den punktweisen Restriktionen an die mechanischen Spannungen wird die Maximierung des mittleren Drehmoments berücksichtigt, um das elektromagnetische Verhalten der Maschine zu optimieren. Der Erfolg der numerischen Tests demonstriert das Potential der entwickelten Methode in der Behandlung realistischer industrieller Problemstellungen. / In the process of designing a physical object, the mechanical stability is an essential requirement in nearly every area of application. Stability can be quantified mathematically by suitable criteria based on the stress tensor, aiming at the prevention of damage in each point within the physical object. This thesis deals with the development of a framework for the solution of optimal design problems with pointwise stress constraints.
First, a regularization of the optimal design problem is introduced. This perturbation of the original problem represents a central element for the success of a solution method. After analyzing the perturbed problem with respect to the existence of solutions, a line search type gradient descent scheme is developed based on an implicit design representation via a level set function. The core of the optimization method is provided by the topological gradient, which quantifies the effect of an infinitesimal small topological perturbation of a given design on an objective functional. Since the developed approach is a method in function space, the numerical realization is a crucial step towards its practical application. The discretization of the state and adjoint equation provide the basis for developing a finite-dimensional version of the optimization scheme.
In the last part of the thesis, numerical experiments are conducted in order to assess the performance of the developed algorithm. First, the stress-constrained minimum volume problem for the L-Beam geometry is addressed. An emphasis is put on examining the effect of the proposed regularization. Afterwards, the multiphysical design of an electrical machine is addressed. In addition to the pointwise constraints on the mechanical stress, the maximization of the mean torque is considered in order to improve the electromagnetic performance of the machine. The success of the numerical tests demonstrate the potential of the developed design method in dealing with real industrial problems.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/28444 |
Date | 27 November 2023 |
Creators | Holley, Jonas |
Contributors | Hintermüller, Michael, Hömberg, Dietmar, Novotny, Antonio Andre |
Publisher | Humboldt-Universität zu Berlin |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0029 seconds