Return to search

Approximation adaptative et anisotrope par éléments finis : Théorie et algorithmes

L'adaptation de maillage pour l'approximation des fonctions par éléments finis permet d'adapter localement la résolution en la raffinant dans les lieux de variations rapides de la fonction. Cette méthode intervient dans de nombreux domaines du calcul scientifique. L'utilisation de triangles anisotropes permet d'améliorer l'efficacité du maillage en introduisant des triangles longs et fins épousant notamment les directions des courbes de discontinuité. Etant donnée une norme d'intérêt et une fonction f à approcher, nous formulons le problème de l'adaptation optimale de maillage, comme la minimisation de l'erreur d'approximation par éléments finis de degré k donné parmi toutes les triangulations (potentiellement anisotropes) de cardinalité donnée N du domaine de définition de f. Nous étudions ce problème sous l'angle des quatre questions ci dessous: I. Comment l'erreur d'approximation se comporte-t-elle dans le régime asymptotique où le nombre N de triangles tend vers l'infini, lorsque f est une fonction suffisamment régulière? II. Quelles classes de fonctions gouvernent la vitesse de décroissance de l'erreur d'approximation lorsque N augmente, et sont en ce sens naturellement liées au problème d'adaptation optimale de maillage? III. Ce problème d'optimisation, qui porte sur les triangulations de cardinalité donnée N, peut-il être remplacé par un problème équivalent portant sur un objet continu? IV. Est-il possible de construire une suite quasi-optimale de triangulations en utilisant une procédure hiérarchique de raffinement?

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00544243
Date06 December 2010
CreatorsMirebeau, Jean-Marie
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds