Because of the tremendous amount of media streaming, video calling and high definition TV and gaming, the biggest challenge for the wireless industry is the increasing demand of high data rates. Utilization of mm-wave frequencies is an attractive option to meet this high demand. Recent advances in low cost semiconductor technologies allow realization of low-cost on-chip RF front-ends in the high millimeter wave (mm-wave) frequencies, making it possible to realize compact systems for these application areas. Although integrated circuits (ICs) are one of the main building blocks of a mm-wave system, in order to realize a fully functional wireless system, cost-effective antenna design and packaging are two important pre-conditions. Researchers have investigated and reported low-cost electronics packaging up to 100 GHz to a great extent on ceramic substrates, but mm-wave packaging above 100 GHz is relatively less explored, particularly on organic substrates.
This Ph.D. dissertation demonstrates the design and development of microwave and mm-wave on-chip and on-package antennas and organically packaged components and modules ranging from 20 GHz to 170 GHz. The focus of this research was to design and develop mm-wave components and modules on LCP, to investigate the viability of this organic substrate and development of fabrication techniques in the K- (18-26.5 GHz), V- (50 to 70 GHz), W- (75 to 110 GHz), and D- (110 to 170 GHz) bands. Additionally, a demonstration of a micro-machined on-chip antenna has also been presented. This dissertation is divided in three parts: (1) characterization of liquid crystal polymer from 110 to 170 GHz. (2) development of highly radiation efficient on-chip and AiP antennas, and (3) development of mm-wave modules with the integration of antennas.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/53085 |
Date | 12 January 2015 |
Creators | Khan, Wasif Tanveer |
Contributors | Papapolymerou, John |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.0024 seconds