L’étude des carbonates fondus présente un enjeu double : fondamental et appliqué. La description systématique de leurs propriétés physico-chimiques sur des gammes étendues de conditions thermodynamiques et de compositions chimiques est important pour le développement de leurs applications technologiques, ainsi que pour la compréhension de certains processus géochimiques. Afin de modéliser les carbonates fondus par simulations atomistiques, nous avons développé un champ de force classique en nous basant sur les données expérimentales disponibles dans la littérature et sur les structures microscopiques issues de simulations de dynamique moléculaire ab initio que nous avons réalisées. En utilisant ce champ de force dans des simulations de dynamique moléculaire, nous avons évalué les propriétés thermodynamiques (équation d’état, tension de surface à pression atmosphérique), la structure microscopique du liquide et les propriétés de transport (coefficients de diffusion, conductivité électrique, viscosité) d’un ensemble de carbonates fondus (Li2CO3, Na2 CO3 , K2 CO3, MgCO3 , CaCO3 et nombre de leurs mélanges) de leur point de fusion jusqu’aux conditions thermodynamiques du manteau terrestre. Nos résultats sont en très bon accord avec les données de la littérature. À notre connaissance, un modèle moléculaire des carbonates fondus couvrant un aussi large domaine de conditions thermodynamiques, de compositions chimiques et de propriétés physico-chimiques n’a encore jamais été publié. Sur la base de ce modèle, nous discutons aussi quelques propriétés des carbonates fondus à l’interface avec une phase gazeuse (gaz rares) : tension de surface et solubilité du gaz. / Because of their remarkable physicochemical properties carbonate melts receive an increasing interest in both fundamental and applied fields. Having a clear picture of their properties over a large range of thermodynamic conditions and chemical compositions is important for developing technological devices (e.g. fuel cell technology) and for providing a better understanding of a number of geochemical processes (e.g. role of molten carbonates in the geodynamics of the Earth’s mantle). To model molten carbonates by atomistic simulations, we have developed an optimized clas- sical force field based on experimental data available in the litterature and liquid structure data obtained from ab initio molecular dynamics simulations that we have performed. In implementing this force field into a molecular dynamics simulation code, we have evaluated the thermodynamics (equation of state, surface tension at atmospheric pressure), the microscopic liquid structure and the transport properties (diffusion coefficients, electrical conductivity and viscosity) of a set of molten carbonates (Li2CO3 , Na2 CO3, K2 CO3 , MgCO3, CaCO3 and many of their mixtures) from their melting point to the thermodynamic conditions of the Earth’s upper mantle. Our results are in very good agreement with the data available in the literature. To our knowledge a molecular model for molten carbonates covering such a large domain of thermodynamic conditions, chemical compositions and physico-chemical properties has never been published yet. Based on this model we also discuss some results on molten carbonates at the interface with a vapor phase (noble gases) : surface tension and gas solubility.
Identifer | oai:union.ndltd.org:theses.fr/2017PA066316 |
Date | 13 October 2017 |
Creators | Desmaele, Elsa |
Contributors | Paris 6, Guillot, Bertrand, Sator, Nicolas |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds