Return to search

Etude de l'oxyde de cuivre CuO, matériau de conversion en film mince pour microbatteries au lithium : caractérisation des processus électrochimiques et chimiques en cyclage / Study of the copper oxide CuO, conversion material prepared in thin film for lithium microbatteries : electrochemical and chemical processes characterizations during cycling

La miniaturisation des appareils électroniques et la multiplication de leurs fonctionnalités conduisent à développer des microsources d’énergie adaptées, parmi lesquelles figurent les microbatteries au lithium. Malgré leurs excellentes performances, ces systèmes de stockage électrochimique tout solide restent toutefois limités en termes de capacité surfacique. Cette caractéristique étant intrinsèquement liée aux matériaux d’électrodes, nous avons choisi de nous intéresser à des couches minces de CuO, dont la capacité volumique théorique (426 µAh .cm-2.µm-1) est sensiblement plus élevée que celle des matériaux d’intercalation utilisés jusqu’à présent. Ce matériau réagit avec le lithium selon un mécanisme particulier, dit de conversion, qui induit la formation d’un système multiphasé et nanostructuré d’une grande complexité. Dans le cadre de ce travail, la compréhension des mécanismes électrochimiques et chimiques mis en jeu au cours du cyclage de couches minces d’oxyde de cuivre (CuO) a été l’objectif majeur. Celui-ci a nécessité une caractérisation fine du matériau actif d’électrode et des interfaces générées (interfaces solide/solide et interface solide/électrolyte). Ces études ont été principalement menées à partir de la Spectroscopie Photoélectronique à Rayonnement X (XPS), de la Microscopie à Force Atomique (AFM) et d’une modélisation théorique exploitant les méthodes de la chimie quantique. Les propriétés chimiques et morphologiques des couches minces de CuO cyclées ont été corrélées à leur comportement électrochimique. Une forte influence de leur structure et de leur morphologie initiales a pu être ainsi mise en évidence / The miniaturization of electronic components and the increasing number of their functionalities lead to the development of suitable energy microsources, among which lithium microbatteries appear. Despite the excellent performances of these all-solid-state electrochemical power sources, one main limitation that remains is their surface capacity. Its value being intrinsically connected to the nature of electrode materials, we chose to focus on CuO thin films which are characterized by a theoretical volumetric capacity (426 µAh .cm-2.µm-1) in far larger than the one of conventional intercalation materials used today. Indeed, this material reacts with lithium according to a particular mechanism, referred as conversion reaction, inducing the formation of a multiphase nanostructured system with a high complexity. In the framework of this study, understanding of electrochemical and chemical mechanisms which take place during the cycling of copper oxide thin films (CuO) was the main objective. This one has required a fine characterization of the electrode active material and the generated interfaces (solid/solid interfaces and solid/electrolyte interface). These studies have been mainly carried out with X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and theoretical approaches based on quantum chemistry methods. The chemical and morphological properties of the cycled CuO thin films have been linked to their electrochemical behavior. An important influence of their initial structure and morphology was then evidenced.

Identiferoai:union.ndltd.org:theses.fr/2013PAUU3027
Date15 November 2013
CreatorsMartin, Lucile
ContributorsPau, Martinez, Hervé
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0029 seconds