On étudie dans ce travail des systèmes de lois de conservation hyperboliques. La première partie étudie le temps d'existence des solutions régulières et régulières par morceaux de la dynamique des fluides compressibles. Après avoir présenté l'état de l'art en matière de solutions régulières, on montre une extension d'un théorème de Grassin à des gaz de Van der Waals. On étudie ensuite les solutions ondes de chocs : on poursuit l'approche de T. T. Li pour estimer leur temps d'existence dans le cas isentropique à symétrie sphérique, et l'approche de Whitham afin d'obtenir une équation approchée vérifiée par la surface de discontinuité. Dans une deuxième partie, motivée par la modélisation d'un rond-point en trafic routier, on étudie une extension multi-classe du modèle macroscopique de Lighthill-Whitham-Richards sur une route infinie avec des jonctions. On différencie les véhicules selon leur origine et leur destination et on introduit des conditions aux bord adaptées au niveau des jonctions. On obtient existence et unicité d'une solution au problème de Riemann pour ce modèle. Des simulations numériques attestent que les solutions obtenues existent en temps long. On aborde enfin le problème de Cauchy par la méthode de front tracking. La dernière partie concerne les lois de conservation scalaires. La première question abordée est le contrôle de la variation totale de la solution et la stabilité des solutions faibles entropiques par rapport au flux et à la source. Ce résultat nous permet d'étudier des équations avec flux non-local. Une fois établi leur caractère bien posé, on montre la Gâteaux-différentiabilité du semi-groupe obtenu par rapport aux conditions initiales.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00452936 |
Date | 07 December 2009 |
Creators | Lécureux-Mercier, Magali |
Publisher | Université Claude Bernard - Lyon I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0015 seconds