Les marches aléatoires en<br />milieu aléatoire constituent un modèle permettant de décrire<br />des phénomènes de diffusion et de transport en milieux<br />inhomogènes, possédant néanmoins des propriétés de<br />régularité à grande échelle. Le premier chapitre,<br />introductif, illustre la richesse de comportements des marches<br />aléatoires en milieu aléatoire. Le second chapitre concerne la<br />marche de Sinai (cas récurrent) et répond négativement à une<br />conjecture d'Erdös et Révész initialement posée pour la<br />marche aléatoire simple. Il révèle un paradoxe lié au<br />phénomène de localisation obtenu par Sinai. Dans le troisième<br />chapitre, nous nous intéressons à la limite supérieure de la<br />marche de Sinai en paysage aléatoire et traitons une conjecture de<br />Révész. Les quatrième et cinquième chapitres concernent les<br />marches aléatoires en milieu aléatoire transientes de vitesse<br />nulle. Un résultat classique de Kesten, Kozlov et Spitzer dit que<br />le temps d'atteinte du niveau n converge en loi, après<br />renormalisation, vers une variable aléatoire positive stable, mais<br />ils n'obtiennent pas la description de son paramètre. Nous<br />présentons ici une nouvelle preuve de ce résultat: une analyse<br />fine du potentiel associé à l'environnement nous permet<br />d'obtenir une caractérisation complète de la loi stable limite.<br />Le cas d'environnements de Dirichlet s'avère être<br />particulièrement explicite.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00158859 |
Date | 29 June 2007 |
Creators | Zindy, Olivier |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0172 seconds