Return to search

Thermodynamic characterization of heavy fermion systems and low dimensional quantum magnets near a quantum critical point

We report experimentally results on the low temperature properties of two classes of materials with a special emphasizes near the QCP induced by substitution and magnetic 1.field: (1) the HF systems YbRh2(Si0.95Ge0.05)2, Yb1-yLayRh2Si2 (y = 0.05, 0.1),and YbIr2Si2 with tetragonal structures and CeIn3-xSnx (x = 0.55, 0.6, 0.65, 0.7, 0.8) with cubic structure; (2) the quantum spin systems: Cs2CuCl4 and Cs2CoCl4. In all the HF compounds we have observed NFL behavior in zero magnetic field close to the QCP. The La substituted system does not show an antiferromagnetic (AFM) transition down to the lowest accessible temperature (0.03 K) while in YbRh2(Si1-xGex)2 with x = 0 and x = 0.05 AFM transitions occur at TN =0.07 K and 0.02 K, respectively. For Yb0.9La0.1Rh2Si2 we observe below 0.07 K saturation of DeltaC/T indicating clearly a LFL state for this concentration. For YbIr2Si2, DeltaC/T saturates below 0.5 K. In contrast to the Yb based compounds in the vicinity of the QCP, CeIn3-xSnx shows no evidence of a divergence in Delta C/T, with B or with x. Furthermore, we used specic heat measurements in the mK temperature range and at high fields (up to 12 T) to probe the phase diagrams in the low dimensional quantum antiferromagnets Cs2CuCl4 and Cs2CoCl4. In applied magnetic field, we have presented experimental evidence that in Cs2CuCl4 the field dependence of the critical temperature Tc(B) ~ (Bc-B)^1-Phi close to the critical field Bc = 8.51 T is well described with Phi=1.5. This is in very good agreement with the exponent expected in the mean-field approximation and support the notion of a Bose-Einstein condensation of magnons in Cs2CuCl4.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1130403549184-89465
Date27 September 2005
CreatorsRadu, Maria Teodora
ContributorsTechnische Universität Dresden, Mathematik und Naturwissenschaften, Physik, Max-Planck-Institut für chemische Physik fester Stoffe, Dr. Heribert Wilhelm, Prof.Dr. J. Sereni, Prof.Dr. F. Steglich, Prof.Dr. J. Wosnitza
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.002 seconds