Le résultat principal est une caractérisation homotopique des orbifolds de dimension 3 qui sont fibrés de Seifert : si O est un orbifold de dimension 3 fermé, orientable et petit dont le groupe fondamental admet un sous-groupe infini cyclique normal, alors O est de Seifert. Ce théorème généralise un résultat de Scott, Mess, Tukia, Gabai et Casson-Jungreis pour les variétés. Il repose sur une caractérisation des groupes de surfaces virtuels comme groupes quasi-isométriques à un plan riemannien complet. D'autres résultats sur les quasi-isométries entre groupes et surfaces sont obtenus.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00001342 |
Date | 20 December 2000 |
Creators | Maillot, Sylvain |
Publisher | Université Paul Sabatier - Toulouse III |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds