Approved for public release; distribution in unlimited. / Silicon Blocked Impurity Band (BIB) detectors are highly efficient, radiation-hardened photodetectors that operate in the range of 5-40 æm. To further extend BIB coverage to 40-350 æm, Ge and GaAs BIB detectors are under development; however, these new detectors face fabrication issues that have delayed their introduction. This thesis will describe the use of a numerical model to examine alternate operating modes for GaAs BIB detectors in order to bypass current fabrication issues. The numerical simulations provide an understanding of the fundamental physics that governs detector transport. The proposed alternatives to standard operation are created by reversing the detector's bias and varying the blocking layer thickness. Modeling indicates that reversing the bias on these detectors provides a larger signal current than standard configurations, while preserving the principal benefits gained from a multilayered device. At the same time, the alternate bias configuration allows for the use of thicker blocking layers, while preserving overall detector responsivity and reducing shot noise. This proposed new model of operation should allow for the relaxation of fabrication constraints without sacrificing the inherent benefits associated with BIB detectors. These devices are of potential interest for missile defense and terahertz surveillance applications. / Lieutenant Commander, United States Navy
Identifer | oai:union.ndltd.org:nps.edu/oai:calhoun.nps.edu:10945/1265 |
Date | 12 1900 |
Creators | Garcia, Jonathan C. |
Contributors | Haegel, Nancy M., Karunasiri, Gamani, Naval Postgraduate School (U.S.)., Physics |
Publisher | Monterey California. Naval Postgraduate School |
Source Sets | Naval Postgraduate School |
Detected Language | English |
Type | Thesis |
Format | xiv, 47 p. : ill. (some col.) ;, application/pdf |
Rights | This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States. |
Page generated in 0.0021 seconds