Dans cette thèse nous mettons en oeuvre une méthode vortex hybride pénalisée (HVP) afin desimuler des écoulements incompressibles autour de corps non profilés dans des milieux complexessolides-fluides-poreux. Avec cette approche particulaire hybride, le phénomène de convection estmodélisé à l’aide d’une méthode vortex afin de bénéficier du caractère peu diffusif et naturel desméthodes particulaires. Un remaillage des particules est alors réalisé systématiquement sur unegrille cartésienne sous-jacente afin d’éviter les phénomènes de distorsion. D’autre part, les effetsdiffusifs et d’étirement ainsi que le calcul de la vitesse sont traités sur la grille cartésienne, àl’aide de schémas eulériens. Le traitement des conditions de bords aux parois de l’obstacle esteffectué à l’aide d’une technique de pénalisation, particulièrement bien adaptée au traitementde milieux solides-fluides-poreux.Cette méthode HVP est appliquée au contrôle passif d’écoulement. Cette étude de contrôleest effectuée respectivement en 2D et en 3D autour d’un demi-cylindre et d’un hémisphère parl’ajout d’un revêtement poreux à la surface de l’obstacle. La présence de cette couche poreusemodifiant la nature des conditions aux interfaces, permet de régulariser l’écoulement global etde diminuer la traînée aérodynamique de l’obstacle contrôlé. A travers des études paramétriquessur la perméabilité, l’épaisseur et la position du revêtement poreux, ce travail vise à identifier desdispositifs de contrôles efficaces pour des écoulements autour d’obstacles comme des rétroviseursautomobiles. / In this work we use a hybrid vortex penalization method (HVP) to simulate incompressibleflows past bluff bodies in complex solid-fluid-porous media. In this hybrid particle approach,the advection phenomenon is modeled through a vortex method in order to benefit from thenatural description of the flow supplied by particle methods and their low numerical diffusionfeatures. A particle remeshing is performed systematically on an underlying Cartesian grid inorder to prevent distortion phenomena. On the other hand, the viscous and stretching effects aswell as the velocity calculation are discretized on the mesh through Eulerian schemes. Finally,the treatment of boundary conditions is handled with a penalization method that is well suitedfor the treatment of solid-fluid-porous media.The HVP method is applied to passive flow control. This flow control study is realized pasta 2D semi-circular cylinder and a 3D hemisphere by adding a porous layer on the surface of thebody. The presence of such porous layer modifies the characteristics of the conditions at theinterfaces and leads to a regularization of the wake and to a decrease of the aerodynamic dragof the controlled obstacle. Through parametric studies on the permeability, the thickness andthe position of the porous coating, this works aims to identify efficient control devices for flowsaround obstacles like the rear-view mirrors of a ground vehicle.
Identifer | oai:union.ndltd.org:theses.fr/2015GREAM018 |
Date | 07 July 2015 |
Creators | Mimeau, Chloé |
Contributors | Grenoble Alpes, Cottet, Georges-Henri, Mortazavi, Iraj |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds