Cette thèse porte sur le développement d’une nouvelle technique de modélisation des problèmes IFS utilisant les méthodes particulaires. Ce travail s’inscrit dans la continuité des travaux de recherche de l’équipe biomécanique du LAMIH, concernant la compréhension du comportement de l’os humain dans son environnement de moelle osseuse. La méthode SPH a été utilisée pour la modélisation des travées osseuses, supposées dans une première approche comme des solides élastiques. La méthode LB a été développée pour la modélisation des écoulements de moelle considérée comme un fluide visqueux incompressible. L’efficacité et la performance de ces deux méthodes ont été démontrées grâce aux benchmarks académiques évalués et les résultats comparés à ceux de la littérature ou ceux obtenus par des logiciels commerciaux. A l’issue d’une revue de l’état de l’art des techniques de couplage fluide-structure, une approche partitionnée en temps a été choisie, permettant d’utiliser deux codes distincts basés sur des algorithmes de résolution de type dynamique explicite. La discrétisation spatiale est faite par une technique spécifique basée sur les domaines fictifs, cette technique est très efficace car elle ne nécessite pas de rediscrétisation des domaines. L’approche de couplage développée a été appliquée à des benchmarks académiques ainsi qu’à une application en biomécanique, ayant permis d’aboutir à des résultats numériques satisfaisants. Plusieurs pistes d’amélioration sont maintenant nécessaires afin d’aller vers des modélisations plus biofidèles telles que la prise en compte du contact et de l’endommagement. / The objective of this thesis is the development of a new technique for the FSI problems modelling using particulars methods. This work is in the continuity of the LAMIH biomechanics team research works, regarding the comprehension of behavior of bone in its environment of marrow. The SPH method was used for the trabeculae modelling, supposed in a first attempt as an elastic solid. The LB method was developed for the marrow flow modelling considered as a viscous incompressible liquid. The efficacy and performance of these two methods were demonstrated using academics benchmarks which were evaluated and the results were compared of those of literature and of those obtained from commercials softwares. Following a bibliographic review of FSI coupling techniques, a partitioned approach in time was chosen, allowing the use of two separates codes, both based on a dynamic explicit algorithm resolution scheme. The special discretization was done based on a specific technique of fictional domain, this technique is very efficient because it doesn’t require an additional domain discretization. The coupling approach developed was applied on academic benchmarks and on a biomechanical application, leading to satisfactory numerical results. Many Improvement track are now necessary to go towards more biofidelic modeling as taking into account the contact and the damage.
Identifer | oai:union.ndltd.org:theses.fr/2017VALE0009 |
Date | 27 February 2017 |
Creators | Laouira, Amina |
Contributors | Valenciennes, Naceur, Hakim, Fontaine, Christian |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds