Cette thèse est scindée en deux parties. Dans un premier temps, nous présentons deux schémas volumes finis pour la discrétisation des problèmes de diffusion-convection-réaction sur les surfaces mouvantes. Le premier schéma présente une extension du schéma volumes finis avec flux à deux points sur les surfaces mouvantes. Le deuxième développe une méthode de type O-méthode. Cette dernière consiste à construire à partir des inconnus au centre des mailles, des solutions linéaires autour des nœuds de maillage qui intègrent la continuité des flux aux interfaces de mailles. La méthode permet aussi la construction des décentrages amont d'ordre 2 et ainsi, offre au procédé l'ordre 2 de convergence sur tout maillage non dégénéré. Ensuite, nous modélisons l'écoulement du couplage filme mince-surfactant (surface active agent) sur les surfaces mouvantes et simulons à l'aide des schémas volumes finis précédemment définis. Ici, l'utilisation du calcul tensoriel et de la méthode d'approximation par la lubrification permettent de réduire les équations de Navier-Stokes caractérisant le mouvement du filme mince en dimension 3 en un système d'équations définies sur la surface courbe mouvante dont l'inconnu est la hauteur du fluide. Le surfactant supposé insoluble est modélisé par une équation de diffusion convection à la l'interface fluid-air. Nous simulons l'ensemble en utilisant une méthode dite de capture d'interface (Interface tracking method) dérivée des volumes finis définis plus haut. Plusieurs exemples illustrent à suffisance l'efficacité et la précision des différentes méthodes.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00731479 |
Date | 12 July 2012 |
Creators | Nemadjieu, Simplice Firmin |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds