La maladie d'Alzheimer (MA) est la forme de démence la plus fréquente dans le monde. Au niveau microscopique, le cerveau des patients atteints par la MA présente deux principales caractéristiques pathologiques : les plaques amyloïdes, constituées d'agrégats du peptide Aβ (Amyloïde Bêta), et les dégénérescences neurofibrillaires, formées par des agrégats de la protéine Tau anormalement hyperphosphorylée. Parmi les facteurs endogènes qui pourraient participer à la progression de la MA, il y a les microARNs (miRs). Les miRs sont des petits ARNs non codants qui régulent l’expression de gènes cibles au niveau post-transcriptionnel. En particulier, la famille miR-132/212 est fortement régulée à la baisse dans le cerveau des patients atteints de la MA. Des études précédentes ont démontré que, chez la souris 3xTg-AD, un modèle de la MA, la délétion génétique de la famille miR-132/212 conduit à une augmentation de la phosphorylation et de l’agrégation de la protéine Tau, les deux mécanismes présumés à la base de la formation des dégénérescences neurofibrillaires. En dehors de son rôle dans la MA, la famille miR-132/212 est également impliquée dans plusieurs troubles neurologiques. Notamment, son niveau d’expression est dérégulé dans d’autres pathologies neurodégénératives, telles que la démence fronto-temporale et la maladie de Parkinson. Il est donc possible que la famille miR-132/212 contribue au processus neurodégénératif de ces pathologies. Dans ce contexte, les travaux présentés visent à étudier le rôle de la famille miR132/212 dans la MA et, plus généralement, dans le cerveau. Tout d’abord, puisque la famille miR-132/212 a déjà un rôle connu dans la formation des dégénérescences neurofibrillaires, nous avons évalué son implication dans la formation des plaques amyloïdes, deuxième caractéristique pathologique de la MA. Nous avons ainsi démontré que la délétion génétique de la famille miR-132/212 favorise la production du peptide Aβ et la formation de plaques amyloïdes chez le modèle murin 3xTg-AD. En utilisant une approche d’ARN-Seq et de bio-informatique, nous avons identifié des gènes faisant partie du réseau de la famille miR-132/212 qui ont des rôles dans la régulation du métabolisme de l'Aβ, y compris Tau, Mapk et Sirt1. En accord avec ces résultats, nous avons montré que la modulation du miR-132, ou de sa cible Sirt1, peut réguler directement la production d’Aβ dans les cellules. Finalement, nous avons démontré que les niveaux de la famille miR-132/212 corrèlent avec la quantité des plaques amyloïdes chez l'Homme. Ensuite, afin d’élucider le rôle de la famille miR-132/212 dans le cerveau, nous nous sommes concentrés sur l’identification de cibles régulées par cette dernière. Dans un premier temps, cette analyse a été conduite dans plusieurs modèles cellulaires in vitro, dans lesquels le rôle du miR-132, un des deux composants de la famille, a été spécifiquement étudié. Dans ce contexte, nous avons démontré que les cibles régulées par le miR-132 sont peu nombreuses et spécifiques au type cellulaire considéré. Dans un deuxième temps, l’analyse d’identification des cibles a été conduite dans un modèle de souris de délétion conditionnelle pour la famille miR-132/212 que nous avons spécifiquement généré. Nous avons ainsi caractérisé des cibles et des réseaux moléculaires modulés par la famille miR-132/212 dans ce modèle. Pris ensemble, ces résultats suggèrent que i) Le réseau de la famille miR-132/212, dont Sirt1 et probablement d'autres gènes cibles, participe à la production du peptide Aβ et la formation de plaques amyloïdes dans la MA ; ii) Même si le miR-132 peut potentiellement cibler un grand nombre de gènes simultanément, son ciblage est sélectif et spécifique au contexte cellulaire étudié. Enfin, les résultats obtenus mettent en évidence un ensemble de nouvelles cibles et de voies de signalisation régulées par la famille miR-132/212. En conclusion, ces travaux contribuent à l'avancement des connaissances du rôle physiologique et pathologique de la famille miR-132/212 dans le cerveau. / Alzheimer's disease (AD) is the most common form of dementia in the world. At the microscopic level, two main pathological features characterize the brain of AD patients: amyloid plaques, consisting of aggregates of the Aβ (Amyloid Beta) peptide, and neurofibrillary tangles, formed by aggregates of abnormally hyperphosphorylated Tau protein. Endogenous factors that may be involved in the progression of AD include microRNAs (miRs). MiRs are small non-coding RNAs that regulate the expression of target genes at the post-transcriptional level. In particular, the miR-132/212 family is strongly downregulated in the brain of AD patients. Previous studies have shown that in the 3xTg-AD mouse model of AD, the genetic deletion of the miR-132/212 family leads to an increase in phosphorylation and aggregation of Tau protein, two mechanisms leading to the formation of neurofibrillary tangles. Apart from its role in AD, the miR-132/212 family is also involved in several neurological disorders. In particular, its level of expression is deregulated in other neurodegenerative pathologies, such as frontotemporal dementia and Parkinson's disease. It is therefore possible that the miR-132/212 family contributes to the neurodegenerative process of these pathologies. In this context, the work presented aims to study the role of the miR-132/212 family in AD and, more generally, in the brain. First of all, since the miR-132/212 family already has a known role in the formation of neurofibrillary tangles, we wanted to evaluate its involvement in the formation of the other major pathological feature of AD: the amyloid plaques. We have demonstrated that the genetic deletion of the miR-132/212 family promotes Aβ production and amyloid plaque formation in the 3xTg-AD mice. Using RNA-Seq and bioinformatics, we identified genes of the miR-132/212 network with documented roles in the regulation of Aβ metabolism, including Tau, mapk, and sirt1. Consistent with these findings, we show that the modulation of miR-132, or its target sirt1, can directly regulate Aβ production in cells. Finally, we have shown that miR-132/212 levels correlate with the amount of amyloid plaques in humans. Then, in order to elucidate the role of the miR-132/212 family in the brain, we focused on identifying targets regulated by the miR-132/212 family. In a first step, this analysis was conducted in several in vitro cell models, in which the role of miR-132, one of two components of the family, was specifically studied. In this context, we have demonstrated that the targets regulated by miR-132 are few and specific to the cell type considered. In a second step, the target identification analysis was conducted in a conditional knockout mouse model for the miR-132/212 family that we specifically generated. We have therefore characterized the molecular targets and networks modulated by the miR-132/212 family in this model. Taken together, these results suggest that i) miR-132/212 network, including Sirt1 and likely other target genes, contributes to abnormal Aβ metabolism and senile plaque deposition in AD; ii) Although miR-132 can potentially target a large number of genes simultaneously, its targeting is selective and specific to the cellular context studied. Finally, the results obtained highlight a set of new targets and signalling pathways regulated by the miR-132/212 family. In conclusion, this work contributes to the advancement of the knowledge of the physiological and pathological role of the miR-132/212 family in the brain.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/32444 |
Date | 20 November 2018 |
Creators | Rainone, Sara |
Contributors | Hébert, Sébastien |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xx, 433 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0167 seconds