Being able to predict the outcome of a game is useful in many aspects. Such as,to aid designers in the process of understanding how the game is played by theplayers, as well as how to be able to balance the elements within the game aretwo of those aspects. If one could predict the outcome of games with certaintythe design process could possibly be evolved into more of an experiment basedapproach where one can observe cause and effect to some degree. It has previouslybeen shown that it is possible to predict outcomes of games to varying degrees ofsuccess. However, there is a lack of research which compares and evaluates severaldifferent models on the same domain with common aims. To narrow this identifiedgap an experiment is conducted to compare and analyze seven different classifierswithin the same domain. The classifiers are then ranked on accuracy against eachother with help of appropriate statistical methods. The classifiers compete onthe task of predicting which team will win or lose in a match of the game BloodBowl 2. For nuance three different datasets are made for the models to be trainedon. While the results vary between the models of the various datasets the general consensus has an identifiable pattern of rejections. The results also indicatea strong accuracy for Support Vector Machine and Logistic Regression across allthe datasets.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mau-20368 |
Date | January 2019 |
Creators | Gustafsson, Andreas |
Publisher | Malmö universitet, Fakulteten för teknik och samhälle (TS), Malmö universitet/Teknik och samhälle |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0014 seconds