The ubiquitination of proteins serves as molecular signal to control an enormous number of physiological processes and its dysregulation is connected to human diseases like cancer. The versatility of this signal stems from the diverse ways by which ubiquitin can be attached to its targets. Thus, specificity and tight regulation of the ubiquitination are pivotal requirements of ubiquitin signaling. Ubiquitin-conjugating enzymes (E2s) act at the heart of the ubiquitination cascade, transferring ubiquitin from a ubiquitin-activating enzyme (E1) to a ubiquitin ligase (E3) or substrate. When cooperating with a RING-type E3, ubiquitin-conjugating enzymes can determine linkage specificity in ubiquitin chain formation. Our understanding of the regulation of E2 activities is still limited at a structural level.
The work described here identifies two regulation mechanisms in UBE2S, a cognate E2 of the human RING-type E3 anaphase-promoting complex/cyclosome (APC/C). UBE2S elongates ubiquitin chains on APC/C substrates in a Lys11 linkage-specific manner, thereby targeting these substrates for degradation and driving mitotic progression. In addition, UBE2S was found to have a role in DNA repair by enhancing non-homologous end-joining (NHEJ) and causing transcriptional arrest at DNA damage sites in homologous recombination (HR). Furthermore, UBE2S overexpression is a characteristic feature of many cancer types and is connected to poor prognosis and diminished response to therapy.
The first regulatory mechanism uncovered in this thesis involves the intramolecular auto-ubiquitination of a particular lysine residue (Lys+5) close to the active site cysteine, presumably through conformational flexibility of the active site region. The Lys+5-linked ubiquitin molecule adopts a donor-like, ‘closed’ orientation towards UBE2S, thereby conferring auto-inhibition. Notably, Lys+5 is a major physiological ubiquitination site in ~25% of the human E2 enzymes, thus providing regulatory opportunities beyond UBE2S. Besides the active, monomeric state and the auto-inhibited state caused by auto-ubiquitination, I discovered that UBE2S can adopt a dimeric state. The latter also provides an auto-inhibited state, in which ubiquitin transfer is blocked via the obstruction of donor binding. UBE2S dimerization is promoted by its unique C-terminal extension, suppresses auto-ubiquitination and thereby the proteasomal degradation of UBE2S.
Taken together, the data provided in this thesis illustrate the intricate ways by which UBE2S activity is fine-tuned and the notion that structurally diverse mechanisms have evolved to restrict the first step in the catalytic cycle of E2 enzymes. / Die Ubiquitinierung von Proteinen fungiert als molekulares Signal zur Kontrolle einer Vielzahl physiologischer Prozesse, wobei eine gestörte Regulation der Ubiquitinierung eng mit zahlreichen Erkrankungen, wie beispielsweise Krebs, verbunden ist. Aufgrund der verschiedenen Verknüpfungsmöglichkeiten von Ubiquitin, die das zelluläre Schicksal des Zielproteins bestimmen, sind Spezifität und stringente Regulation unabkömmliche Voraussetzungen im Ubiquitinierungsprozess.
Ubiquitin-konjugierende Enzyme (E2s) fungieren in der Mitte der Ubiquitinierungskaskade. Sie übernehmen ein Ubiquitinmolekül vom Ubiquitin-aktivierenden Enzym (E1) und übertragen es auf eine Ubiquitin-Ligase (E3) oder direkt auf das Zielprotein. Arbeiten Ubiquitin-konjugierende Enzyme mit E3s des RING-Typus zusammen, so bestimmen E2s die Art der Verknüpfung. Die Regulation der Aktivität Ubiquitin-konjugierender Enzyme auf struktureller Ebene ist jedoch bisher nur bedingt verstanden.
Die hier dargelegte Arbeit umfasst die Identifizierung zweier Regulationsmechanismen des Ubiquitin-konjugierenden Enzyms UBE2S. UBE2S arbeitet mit einem humanen E3 des RING-Typus‚ dem ‚Anaphase Promoting Complex/Cyclosome‘ (APC/C) zusammen und bildet Lys11-spezifische Ubiquitinketten auf Substraten des APC/Cs. Hierdurch werden die Substrate für den Abbau durch das Proteasom markiert, was das Fortschreiten der Mitose bedingt. Zusätzlich wird UBE2S eine Rolle in der DNS-Reparatur zugeschrieben. Hierbei verstärkt UBE2S die nicht-homologe Rekombination (NHEJ) und verhindert außerdem die Transkription an DNS-Bruchstellen, die durch Homologe Rekombination (HR) repariert werden. Die Überexpression von UBE2S ist ein Charakteristikum verschiedenster Krebsarten, vermindert den Erfolg herkömmlicher Krebstherapien, und führt somit zu schlechten Prognosen für betroffenen Patienten.
Der erste hier beschriebene Regulationsmechanismus beinhaltet die intramolekulare Ubiquitinierung eines Lysins (Lys+5) nahe des katalytischen Cysteins, mutmaßlich durch strukturelle Flexibilität der Region des aktiven Zentrums. Das Lys+5-verknüpfte Ubiquitin nimmt eine Donorubiquitin-ähnliche Position auf UBE2S ein, wodurch UBE2S gehemmt wird. Da ein Lysin an der Position +5 in ~25% der humanen E2-Enzyme vorhanden und eine physiologische Ubiquitinierungsstelle ist, birgt dieser Mechanismus Regulationsmöglichkeiten über UBE2S hinaus. Zusätzlich zum aktiven monomeren Zustand und dem durch Autoubiquitinierung ausgelösten inhibierten Zustand, kann UBE2S auch als Dimer vorliegen. In diesem Zustand ist es ebenfalls inaktiv, da die Donorubiquitin-Bindestelle auf UBE2S durch ein zweites Molekül des E2s blockiert wird. Begünstigt wird die Dimerisierung durch die C-terminale Verlängerung von UBE2S und verhindert so deren Autoubiquitinierung, und folglich den proteasomalen Abbau von UBE2S. Es handelt sich hierbei somit um einen zweiten Regulationsmechanismus von UBE2S.
Zusammenfassend veranschaulichen die in dieser Arbeit dargelegten Daten die komplexen Möglichkeiten, durch die die Aktivität von UBE2S reguliert werden kann, sowie die Erkenntnis, dass strukturell unterschiedliche Mechanismen existieren, um den ersten Schritt der von Ubiquitin-konjugierenden Enzymen katalysierten Reaktion zu hemmen.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:20419 |
Date | January 2021 |
Creators | Liess [née Eller], Anna Katharina Luise |
Source Sets | University of Würzburg |
Language | English |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds