Submitted by GIVANILDO DONIZETI DE MELO null (givadonimelo@hotmail.com) on 2016-05-12T02:56:09Z
No. of bitstreams: 1
Dis. Mestrado.pdf: 1055550 bytes, checksum: 47636418da76c9ad7d114b45ea3e96c1 (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-05-13T16:57:01Z (GMT) No. of bitstreams: 1
melo_gd_me_sjrp.pdf: 1055550 bytes, checksum: 47636418da76c9ad7d114b45ea3e96c1 (MD5) / Made available in DSpace on 2016-05-13T16:57:01Z (GMT). No. of bitstreams: 1
melo_gd_me_sjrp.pdf: 1055550 bytes, checksum: 47636418da76c9ad7d114b45ea3e96c1 (MD5)
Previous issue date: 2016-03-23 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Neste trabalho nós estudamos o seguinte resultado: para um espaço métrico compacto X, de dimensão n, o subespaço dos mergulhos de X em R2n é denso no espaço das funções contínuas de X em R2n se, e somente se, dim(X x X)<2n. A demonstração apresentada é aquela dada por J. Krasinkiewicz e por S. Spiez. / In this work we study the following result: given a compact metric space X of dimension n, the subspace consisting of all embeddings of X into R2n is dense in the space of all continuous maps of X into R2n if and only if dim(X x X)<2n. The presented proof is the one given by J. Krasinkiewicz e por S. Spiez.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unesp.br:11449/138318 |
Date | 23 March 2016 |
Creators | Melo, Givanildo Donizeti de [UNESP] |
Contributors | Universidade Estadual Paulista (UNESP), Monis, Thaís Fernanda Mendes [UNESP] |
Publisher | Universidade Estadual Paulista (UNESP) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UNESP, instname:Universidade Estadual Paulista, instacron:UNESP |
Rights | info:eu-repo/semantics/openAccess |
Relation | 600 |
Page generated in 0.0025 seconds