Return to search

Chip-last embedded low temperature interconnections with chip-first dimensions

Small form-factor packages with high integration density are driving the innovations in chip-to-package interconnections. Metallurgical interconnections have evolved from the conventional eutectic and lead-free solders to fine pitch copper pillars with lead-free solder cap. However, scaling down the bump pitch below 50-80µm and increasing the interconnect density with this approach creates a challenge in terms of accurate solder mask lithography and joint reliability with low stand-off heights. Going beyond the state of the art flip-chip interconnection technology to achieve ultra-fine bump pitch and high reliability requires a fundamentally- different approach towards highly functional and integrated systems. This research demonstrates a low-profile copper-to-copper interconnect material and process approach with less than 20µm total height using adhesive bonding at lower temperature than other state-of-the-art methods. The research focuses on: (1) exploring a novel solution for ultra-fine pitch (< 30µm) interconnections, (2) advanced materials and assembly process for copper-to-copper interconnections, and (3) design, fabrication and characterization of test vehicles for reliability and failure analysis of the interconnection.
This research represents the first demonstration of ultra-fine pitch Cu-to-Cu interconnection below 200°C using non-conductive film (NCF) as an adhesive to achieve bonding between silicon die and organic substrate. The fabrication process optimization and characterization of copper bumps, NCF and build-up substrate was performed as a part of the study. The test vehicles were studied for mechanical reliability performance under unbiased highly accelerated stress test (U-HAST), high temperature storage (HTS) and thermal shock test (TST). This robust interconnect scheme was also shown to perform well with different die sizes, die thicknesses and with embedded dies. A simple and reliable, low-cost and low-temperature direct Cu-Cu bonding was demonstrated offering a potential solution for future flip chip packages as well as with chip-last embedded active devices in organic substrates.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/37104
Date18 November 2010
CreatorsChoudhury, Abhishek
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds