Current board technologies are inherently performance-limited (FR-4) or cost-prohibitive (Al2O3/AlN). Next-generation high-density packaging applications would necessitate a new base substrate material to achieve ultra-fine pitch solder-joint reliability and multiple layers of fine-line wiring at low cost. The NEMI 2000 roadmap defines the need for 4-8 layers of 5-10 m wiring for future system boards. The 2003 ITRS roadmap calls for organic substrates with less than 100-m area-array pitch in the package or board by year 2010. Solder-joint reliability at such fine-pitch is a matter of concern for the industry. Use of underfills reduces thermal stresses but increases cost and, in addition, their dispensing becomes increasingly more complicated with the shorter gaps required for future interconnects. Therefore, there is a pronounced need to evaluate board materials with CTE close to that of Si for reliable flip-chip on board without underfill.
Recently, a novel manufacturing process (using polymeric precursor) has been demonstrated to yield boards that have the advantages of organic boards in terms of large-area processability and machinability at potentially low-cost while retaining the high stiffness (~250 GPa) and Si-matched CTE (~2.5 ppm/㩠of ceramics. This work reports the evaluation of novel SiC-based ceramic composite board material for ultra-fine pitch solder-joint reliability without underfill and multilayer support.
FE models were generated to model the behavior of flip-chips assembled without underfill and subjected to accelerated thermal cycling. These models were used to calculate solder-joint strains which have a strong direct influence on fatigue life of the solder. Multilayer structures were also simulated for thermal shock testing so as to assess via strains for microvia reliability. Via-pad misregistration was derived from the models and compared for different boards.
Experiments were done to assemble flip-chips on boards without underfill followed by thermal shock testing so as to get the number of cycles to failure. To assess microvia reliability, 2 layer structures containing vias of different diameters were fabricated and subjected to thermal cycling. Via-pad misalignment was also studied experimentally. Modeling and experimental results were corroborated so as to evaluate thermomechanical suitability of C-SiC for high-density packaging requirements.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/7100 |
Date | 23 June 2005 |
Creators | Kumbhat, Nitesh |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Thesis |
Format | 3871428 bytes, application/pdf |
Page generated in 0.0027 seconds