Return to search

Dynamique des grandes échelles de la convection dans la photosphère solaire

Les mesures des champs de vitesse turbulents dans la photosphère solaire font apparaître trois échelles horizontales distinctes : la granulation (1~000~km), la mésogranulation (7~000~km), et la supergranulation (30~000~km). La granulation résulte du refroidissement radiatif brutal à la surface du gaz chaud et montant. En revanche, l'origine de la mésogranulation et de la supergranulation est en grande partie inconnue. Au cours de cette thèse, plusieurs modèles de convection ont été élaborés afin de mettre en évidence des mécanismes de formation de ces écoulements à grande échelle. Une première approche théorique a consisté à étudier l'instabilité convective dans le domaine linéaire en présence de champ magnétique, de stratification en densité, et de conditions aux limites de flux thermique, pertinentes aux grandes échelles. Cette étude a montré que des cellules de convection très allongées étaient favorisées et qu'une échelle supergranulaire pouvait être obtenue pour des valeurs réalistes de champ magnétique. Dans un deuxième temps, des simulations numériques directes de convection turbulente compressible avec un rapport d'aspect très important ont été réalisées afin d'étudier la dynamique aux grandes échelles. Ces simulations, effectuées à l'aide d'un code DNS développé en partie durant la thèse, ont permis de mettre en évidence la formation de deux échelles horizontales distinctes. La première, comparable à la granulation, n'est visible qu'à proximité de la surface. La seconde est une mésoéchelle très énergétique, de taille intermédiaire entre la dimension horizontale du domaine et la granulation. Elle est présente à toutes les profondeurs et son origine est convective. La mésogranulation solaire, au vu de ses ressemblances avec ce motif, pourrait donc dominer la dynamique convective sous la surface tout en étant masquée par la granulation. Une troisième approche, visant à étudier la possibilité que la supergranulation résulte d'une instabilité à grande échelle de la granulation, a finalement été proposée. A cette fin, les premiers pas vers un calcul de coefficients de transport turbulent pour des écoulements convectifs ont été faits en développant un code s'appuyant sur le formalisme de théories hydrodynamiques de champ moyen pour l'effet AKA et la viscosité turbulente.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00008710
Date10 December 2004
CreatorsRINCON, Francois
PublisherUniversité Paul Sabatier - Toulouse III
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0079 seconds