The objective of this dissertation is to develop key components of a CMOS heterodyne millimeter-wave receiver front end. Robust designs are necessary to overcome PVT variations as well as modeling inaccuracies, while with minimum power consumption overhead to facilitate low-power radio for portable applications. Heterodyne receiver topology is adopted because of its robust performances at millimeter-wave frequencies. Device models for both passive and active devices are developed and used in the circuit designs in this dissertation.
Two low-noise amplifiers (LNAs) are developed in this dissertation. The first LNA features a proposed temperature-compensation biasing technique, which confines the gain variation within 5 dB for temperature variation from -5 to 85 Celsius degree. The measured gain and NF are 21 and 6.5 dB, respectively, for 49-mW power dissipation. The second LNA reveals a design technique to tolerate a low-accuracy model at millimeter-wave frequencies. Both LNAs provide full coverage of the FCC 60-GHz band (57-64 GHz).
For the frequency generation circuits, both the IF QVCO and mm-wave VCO are investigated. The inherent bimodal oscillation of QVCOs is analyzed and, for the first time, a systematic measurement technique is proposed to intentionally control the oscillation mode. This technique is further utilized to extend the tuning range of the QVCO, which possesses dual tuning curves without penalty on phase noise. The measurement results of a 13-GHz QVCO in 90-nm CMOS reveals a 21.4% tuning range for continuously tuning from 11.7 to 14.5 GHz. The measured phase noise is -108 dBc/Hz at 1 MHz offset with a core power consumption of 10.8 mW. A millimeter-wave VCO is designed and fabricated in 65-nm CMOS. The VCO is fully characterized under voltage stress to examine the hot-carrier injection effects affecting the performance of a millimeter-wave VCO. The 41.6-47.4 GHz VCO is further integrated into a millimeter-wave down converter. The power-hungry buffer amplifiers are neglected by proper floor planning. Conversion loss of 1.4 dB is obtained with total power consumption of 72.5 mW.
Lastly, a power management system consisting of low-dropout (LDO) regulators is designed and integrated in a 90-nm CMOS millimeter-wave transceiver to provide stable and low-noise supply voltages. Voltage variation issues are alleviated by the LDOs.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/45877 |
Date | 02 November 2012 |
Creators | Hsin, Shih-Chieh |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0016 seconds