Cette thèse présente l'étude probabiliste et statistique approfondie des modèles bilinéaires à temps discret. On étudie ces modèles à partir de différentes approches (discrète, markovienne). On trouve tout d'abord une présentation globale des modèles non linéaires, la description des outils probabilistes utiles à l'étude des modèles non linéaires, ainsi qu'une présentation des modèles bilinéaires à partir de simulations permettant de mettre en évidence leurs principales caractéristiques trajectorielles. L'approche markovienne s'avère beaucoup plus puissante que l'approche directe. Nous démontrons l'existence d'une représentation markovienne sous la forme d'un modèle polynomial affine en l'état; nous donnons des critères pour la minimalité et l'inversibilité de ces représentations. Sur le plan statistique, nous avons montre la convergence presque sure des estimateurs des moindres carrés. D'autres estimateurs sont aussi envisagés permettant de mettre en place des tests d'adéquation de modèles. Certains travaux de l'auteur (huit articles) ont été publiés et sont regroupés dans l'annexe.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00330671 |
Date | 03 June 1988 |
Creators | Guegan, Dominique |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | habilitation ࠤiriger des recherches |
Page generated in 0.0019 seconds