Groundwater flow modelling provides an important quantitative instrument for addressing issues related to the quantity and quality of groundwater and the connected water resources. Consequently, groundwater flow models have been developed and used ubiquitously in science to deepen the understanding of subsurface processes and their drivers as well as management and planning tools.
The present work investigates how numerical models can be linked to field investigations and public databases to quantitatively approach questions in the area of groundwater research. The primary goal is to develop new, efficient ways to overcome limitations of the individual hydrological concepts for solving specific hydrological problems and to increase the understanding of practical applicability of different methods. For this purpose, tailor-made approaches were developed for different study areas covering diverse spatial scales: the hydrology of a small mining lake, the riparian aquifer at the scale of a single meander as well as the aquifer systems of a large-scale river basin in China.
The first part of the work deals with the physical and mathematical modelling of water constituents balance in a meromictic mining lake in Lusatia. The capability of using a rather simple mass-balance model based on a sufficient dataset of field data to evaluate lake stratification and lake-groundwater interaction were shown.
In the second part, a transient numerical groundwater flow model was developed for the riparian aquifer of a stream meander and was calibrated by three different salt tracer tests. The model was used to proof the reliability of subsurface travel times derived from time series analysis and to give insights in the riparian zone dynamics during changing hydraulic gradients.
The third part of the work describes the methodology to conduct risk assessment of groundwater contamination on the large catchment scale of the Songhua River in China. A comprehensive literature study was conducted to get an overview about measurement data on water quality data in China. A three-dimensional numerical flow and mass transport model was applied to access the flow and matter transport dynamics in the aquifer system of a sub-basin considering changing groundwater exploitation scenarios. Consequently, numerical groundwater modelling was combined with processed remote sensing and web mapping service data to overcome field data limitations and to derive groundwater vulnerability, groundwater hazard and groundwater risk maps for the entire Songhua River Basin.
Summarizing, this doctoral thesis could develop new methods of combining field measurements, data assimilation and aggregation from various sources and groundwater modelling strategies and successfully apply these methods to find solutions on problems of multiple scales and across water systems. / Die Grundwassermodellierung stellt eine wichtige wissenschaftliche Methode zur quantitativen Analyse von Fragestellungen zum Schutz der Menge und Güte der Grundwasserressourcen sowie der angeschlossenen Wasserkörper dar. Dementsprechend werden Grundwassermodelle sowohl für Planungs- und Bewertungszwecke im Wasserressourcenmanagement als auch zur wissenschaftlichen Erforschung der Prozesse im Untergrund entwickelt und angewendet.
Die vorliegende Arbeit untersucht in diesem Rahmen, wie numerische Modelle, Feldmessungen und Daten generiert aus Fernerkundungsdaten und Webplattformen systematisch verknüpft werden können, um Fragestellungen im Bereich der Grundwasserforschung quantitativ zu beantworten. Das Ziel der Arbeit ist es neue effiziente Abläufe zu entwickeln, die die Limitierung der einzelnen Methoden überwinden und diese auf deren Anwendbarkeit für die Lösung spezifischer hydrologischer Probleme zu analysieren. Zu diesem Zweck wurden in dieser Doktorarbeit fallspezifische Lösungen für verschiedene Untersuchungsgebiete entwickelt, die sowohl in der räumlichen Skale als auch in den zu untersuchenden hydrologischen Fragestellungen eine große Diversität aufweisen.
Im ersten Teil der Arbeit wurde die Massenbilanz von Wasserinhaltsstoffen in einem meromiktischen Tagebaurestsee im Lausitzer Revier durch physikalische und mathematische Modellierungsmethoden untersucht. Dabei konnte gezeigt werden, dass auf Basis einer gewonnenen mehrjährigen Zeitreihe von Messdaten ein einfaches Massenbilanzmodell in der Lage ist, sowohl Seeschichtungs- als auch Grundwasseraustauschdynamiken quantitativ zu beschreiben.
Der zweite Teil der Arbeit umfasst die Entwicklung eines transienten numerischen Grundwassermodells für den quartären Uferaquifer im Bereich eines Flussmäanders der Selke welches anhand von Daten aus mehreren Salztracertests kalibriert wurde. Das Modell wurde dafür verwendet die transienten Verweilzeiten in der gesättigten Zone des Mäanderbogens unter dem Einfluss dynamischer hydraulischer Bedingungen zu untersuchen. Die Ergebnisse wurden im Anschluss mit Verweilzeiten verglichen, die aus der Analyse der zeitlichen Verschiebung von gemessenen elektrischen Leitfähigkeitszeitreihen zwischen Fluss und Grundwassermessstellen gewonnen wurden. Durch dieses kombinierte Verfahren konnten sowohl die Beschränkungen der zeitreihenbasierten Verweilzeitberechnung aufgezeigt als auch ein tieferes Systemverständnis für die Interaktionsdynamiken zwischen Grund- und Flusswasser auf der Mäanderskala gewonnen werden.
Der dritte Teil der Arbeit beschreibt die Vorgehensweise für die Bewertung des Grundwasserkontaminationsrisikos im Einzugsgebiet des Songhua Flusses in China. Eine umfassende Literaturstudie wurde durchgeführt, um einen Überblick über die Verfügbarkeit von Messdaten zur Belastung der Wasserressourcen Chinas mit organischen Schadstoffen zu erhalten. Danach wurde für ein Teileinzugsgebiet ein dreidimensionales numerisches Grundwassermodell auf Basis der vorhandenen hydrogeologischen Daten aufgebaut. Dieses wurde dazu verwendet die Änderungen im Stofftransports und den Schadstoffkonzentrationen innerhalb des Aquifersystems unter steigenden Entnahmeraten zu analysieren. Basierend auf diesen Studien wurden auf der Skale des Gesamteinzugsgebiets, um die beschränkte Verfügbarkeit von Felddaten auszugleichen, die Ergebnisse der numerischen Grundwassermodellierung mit Fernerkundungsdaten und Webdatenbanken in einem Indexsystem kombiniert mit dem für die oberflächennahen Aquifere Vulnerabilität, Gefährdungspotential und Verschmutzungsrisiko in einer räumlichen Auflösung von 1 km² bestimmt wurden.
Zusammenfassend konnten durch die vorliegende Doktorarbeit neue passgenaue Methoden zur effektiven Kombination von in-situ Messungen, der Datenerhebung und Datenintegration aus vielfältigen Datenquellen sowie numerischen Grundwassermodellierungsstrategien entwickelt und zur Lösung der untersuchten hydrologischer Fragestellen auf den verschiedenen Skalen und über die Grenzen der einzelnen hydrologischen Teilsysteme hinaus erfolgreich angewandt werden.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-236485 |
Date | 04 June 2018 |
Creators | Nixdorf, Erik |
Contributors | Technische Universität Dresden, Fakultät Umweltwissenschaften, Prof. Dr. Olaf Kolditz, Prof. Dr. Olaf Kolditz, JProf. Dr. Marc Walther, Prof. Dr. Beidou Xi |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0027 seconds